Giair bất pt sau :
\(\frac{x^2+2x+2}{x+1}>\frac{x^2+4x+5}{x+2}+1\)1
Giair phương trình sau \(\frac{x^2-4x+1}{x+1}+2=-\frac{x^2-5x+1}{2x+1}\)
\(ĐKXĐ:x\ne-1;x\ne-\frac{1}{2}\)
\(PT:\Leftrightarrow\frac{x^2-4x+1}{x+1}+1+\frac{x^2-5x+1}{2x+1}=0\)
\(\Leftrightarrow\frac{x^2-3x+2}{x+1}+\frac{x^2-3x+2}{2x+1}=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{x+1}+\frac{1}{2x+1}\right)=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(3x+2\right)=0\)
\(x-1=0\Leftrightarrow x=1\)
\(x-2=0\Leftrightarrow x=2\)
\(3x+2=0\Leftrightarrow3x=-2\Leftrightarrow x=-\frac{2}{3}\)
\(\Rightarrow\hept{\begin{cases}x=1\\x=2\\x=-\frac{2}{3}\end{cases}}\)
\(\frac{x^2-4x+1}{x+1}+2=-\frac{x^2-5x+1}{2x+1}\)
\(\Leftrightarrow\left(x^2-4x+1\right)\left(x+1\right)+2\left(x+1\right)\left(2x+1\right)=-\left(x^2-5x+1\right)\left(x+1\right)\)
\(\Leftrightarrow2x^3-3x^2+4x+3=-x^3+4x^2+4x-1\)
\(\Leftrightarrow2x^3-3x^2+3+x^2-4x+1=0\)
\(\Leftrightarrow3x^2-7x^2+4=0\)
\(\Leftrightarrow\left(3x^2-4x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x^2+2x-6x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x\left(3x+2\right)-2\left(3x+2\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}3x+2=0\\x-2=0\\x-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\x=2\\x=1\end{cases}}\)
vậy:...
giair pt:\(2-\frac{x-1}{x}=\left(\frac{\sqrt[3]{2.x^2+x^3}+x+2}{2x+1}\right)^2\)
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
Bµi 5: Gi¶i PT sau.
\(a,\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
b,\(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
\(c,\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
d) (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
e) x4 + 2x3 + 4x2 + 2x + 1 = 0
\(f,\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}=1\)
a) \(\frac{5x-2}{2-2x}+\frac{2x-1}{2}+\frac{x^2+x-3}{1-x}=1\)
ĐK: x≠1
<=>\(\frac{5x-2}{2\left(1-x\right)}+\frac{2x-1}{2}\frac{x^2+x-3}{1-x}=1\)
<=>\(\frac{5x-2+\left(1-x\right).\left(2x-1\right)+2\left(x^2+x-3\right)}{2\left(1-x\right)}=1\)
<=>\(\frac{5x-2+2x-1-2x^2+x+2x^2+2x-6}{2\left(1-x\right)}=1\)
<=>\(\frac{10x-9}{2\left(1-x\right)}=1\)
<=> 10x-9=2(1-x)
<=>10x-9=2-2x
<=> 10x+2x= 2+9
<=> 12x=11
<=> x= \(\frac{11}{12}\left(tm\right)\)
b) \(\frac{6x-1}{2-x}+\frac{9x+4}{x+2}=\frac{3x^2-2x+1}{x^2-4}\)
ĐK: x≠2, x≠-2
<=>\(\frac{6x-1}{-\left(x-2\right)}+\frac{9x+4}{x+2}-\frac{3x^2-2x+1}{\left(x-2\right)\left(x+2\right)}=0\)
<=> -(x+2).(6x-1)+(x-2).(9x+4)-(3x2-2x+1)=0
<=> -(6x2-x+12x-2)+9x2+4x-18x-8-3x2+2x-1 = 0
<=> -6x2-11x+2+9x2+4x-18x-8-3x2+2x-1=0
<=> -23x-7=0
<=> -23x=7
<=> x= \(\frac{-7}{23}\left(tm\right)\)
tham khảo câu d trong
https://hoc24.vn/hoi-dap/question/919967.html
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
Giải bất đẳng thức sau: \(\frac{x^2+2x+2}{x+1}\ge\frac{x^2+4x+5}{x+2}-1\)
Giai pt sau
a) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
b) \(\frac{7}{8x}+\frac{5-x}{4x^2-8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
Giair phương trình: \(\frac{x^2-5x+1}{2x+1}+2=\frac{x^2-4x+1}{x+1}\)
Ta có:
\(\frac{x^2-5x+1}{2x+1}+2=\frac{x^2-5x+4x+1+2}{2x+1}\)
=\(\frac{x^2-x+3}{2x+1}=\frac{x^2-4x+1}{x+1}\)
=> (x2 - x +3)(x+1)=(x2 - 4x+1)(2x+1)
=>x3 +2x+3=2x3-7x2-2x+1
=>0=x3-7x2-4x-2
Đây là cách làm của mình :
\(\Leftrightarrow\frac{x^2-5x+1}{2x+1}+1+1=\frac{x^2-4x+1}{x+1}\)
\(\Leftrightarrow\frac{x^2-5x+1}{2x+1}+1=\frac{x^2-4x+1}{x+1}-1\)
\(\Leftrightarrow\frac{x^2-3x+2}{2x+1}=\frac{x^2-5x}{x+1}\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)}{2x+1}=\frac{x^2-5x}{x+1}\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)=\left(2x+1\right)\left(x^2-5x\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-1\right)=\left(2x+1\right)\left(x^2-5x\right)\)
Bạn tự nhân phân phối vào nha :
\(\Leftrightarrow x^3-2x^2-x+2=2x^3-9x^2-5x\)
\(\Leftrightarrow x^3-7x^2-4x-2=0\)
Đến đây chỉ có nước bấm máy tính thôi chứ phân tích bình thường không ra được đâu
CASIO fx-570VN PLUS : Mode --> 5 --> 4 : giải pt bậc 3 một ẩn
Kết quả cho là x = 7.563793497...
Giải bất phương trình sau:
\(\frac{x^2+2x+2}{x+1}>\frac{x^2+4x+5}{x+2}-1\)
Giair pt sau : \(x^2-x-\frac{1}{x}+\frac{1}{x^2}-10=0\)
\(x^2-x-\frac{1}{x}+\frac{1}{x^2}-10=0\Leftrightarrow\frac{x^4-x^3-10x^2-x+1}{x^2}=0\)\(\Leftrightarrow x^4-x^3-10x^2-x+1=0\)
\(\Leftrightarrow\left(x^4-4x^3+x^2\right)+\left(3x^3-12x+3x\right)+\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow x^2\left(x^2-4x+1\right)+3x\left(x^2-4x+1\right)+\left(x^2-4x+1\right)=0\)
\(\Leftrightarrow\left(x^2+3x+1\right)\left(x^2-4x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x^2+3x+1=0\\x^2-4x+1=0\end{cases}}\)
giải từng trường hợp là ra nghiệm
giải pt \(\frac{x^2+x+1}{x^2+2x+1}+\frac{x^2+3x+1}{x^2+4x+1}=\frac{5}{6}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)