Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trương cẩm vân
Xem chi tiết
tran ha phuong
Xem chi tiết
nguyen Ha kieu thu
Xem chi tiết
Hoàng Thu Hà
Xem chi tiết
Nguyễn Hoàng Sơn
14 tháng 11 2016 lúc 20:52

khó quá

Đào Anh Phương
Xem chi tiết
Nguyễn Diệu Linh
Xem chi tiết
nguyen anh ngoc ly
Xem chi tiết
alibaba nguyễn
13 tháng 6 2017 lúc 11:38

Ta có:

\(\frac{n\left(n+2\right)}{\left(n+1\right)^2}=1-\frac{1}{\left(n+1\right)^2}>1-\frac{1}{n\left(n+2\right)}=1+\frac{1}{2}.\left(\frac{1}{n+2}-\frac{1}{n}\right)\)

Thế vô bài toán ta được

\(B=\frac{2.4}{3^2}+\frac{4.6}{5^2}+...+\frac{200.202}{201^2}\)

\(>1+1+...+1+\frac{1}{2}.\left(\frac{1}{4}-\frac{1}{2}+\frac{1}{6}-\frac{1}{4}+...+\frac{1}{202}-\frac{1}{200}\right)\)

\(=100+\frac{1}{2}.\left(\frac{1}{202}-\frac{1}{2}\right)=\frac{10075}{101}>99,75\)

Thắng Nguyễn
13 tháng 6 2017 lúc 11:51

Ta có đánh giá sau:\(\frac{n\left(n+2\right)}{\left(n+1\right)^2}=1-\frac{1}{\left(n+1\right)^2}\)

\(>1-\frac{1}{x\left(x+2\right)}=1-\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2}\right)\)

Suy ra \(B=\frac{2\cdot4}{3^2}+\frac{4\cdot6}{5^2}+\frac{6\cdot8}{7^2}+...+\frac{200\cdot202}{201^2}\)

\(>1-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)+1-\frac{1}{2}\left(\frac{1}{4}-\frac{1}{6}\right)+...+1-\frac{1}{2}\left(\frac{1}{200}-\frac{1}{202}\right)\)

\(=100-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{200}-\frac{1}{202}\right)\)

\(=100-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{202}\right)\)\(=100-\frac{1}{2}\cdot\frac{50}{101}\)

\(>100-\frac{1}{2}\cdot\frac{50}{100}=100-0,25=99,75\)

Tức là \(B>99,75\) 

Thắng Nguyễn
13 tháng 6 2017 lúc 11:51

v~ thành nhai lại rồi :V

Anh Nguyễn Khoa Diệu
Xem chi tiết
Nguyễn quốc học
Xem chi tiết
nguyen Ha kieu thu
7 tháng 2 2016 lúc 12:44

bạn làm xong bài này chưa dạy mình với

Nguyễn Tiến An
4 tháng 4 2016 lúc 20:13

giup giai cau nay voi

Đào Quang Minh
24 tháng 2 2018 lúc 16:18

:$\frac{n(n+2)}{(n+1)^2}

                                          =1-\frac{1}{(x+1)^2}

                                          > 1-\frac{1}{x(x+2)}

                                          = 1-\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$

Thay lần lượt vô