tinh gia tri bieu thuc (-1)^2n. (-1)^n.(-1)^n+1
TINH GIA TRI BIEU THUC ko tim n tinh bieu thuc
125.(-61):(-2)^3:(-1)^2n (nTHUOC N*)
bai 1 tinh gia tri cua bieu thuc 78 x m + 22 x m voi m =135
bai 2 tinh gia tri cua bieu thuc 78 x m + 42 x m -20 x m voi m =1035
bai 3 cho bieu thuc B = 119 x n - n x 9 bieu thuc B co gia tri bang 8470 khi n =............
cho bieu thuc 2n+1/n+5(n thuoc Z)
a, tim n de Pco gia tri la 1 so nguyen
b,tim gia tri lon nhat,gia tri nho nhat cua P
để P thuộc Z =>2n+1 chia hết cho n+5
=>2n+10-9 chia hết cho n+5
=>2(n+5)-9 chia hết cho n+5
=>9 chia hết cho n+5
\(\Rightarrow n+5\in\left\{-9;-3;-1;1;3;9\right\}\)
\(\Rightarrow n\in\left\{-14;-8;-6;-4;-2;4\right\}\)
tim cac gia tri nguyen cua n đe bieu thuc 2n2-n+2 chia hết cho biểu thức 2n+1
Ta có: 2n2 – n + 2 : (2n + 1)
Ta có: n ∈ Z và 2n2 – n + 2 chia hết cho 2n +1 thì 2n + 1 là ước của 3. Ước của 3 là \(\left\{-3;-1;1;3\right\}\)
Khi 2n + 1 = 1 ⇔2n = 0 ⇔ n = 0
Khi 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1
Khi 2n + 1 = 3 ⇔ 2n = 2 ⇔ n – 1
Khi 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2
Vậy, n = 0 hoặc n = – 1 hoặc n = 1 hoặc n = -2.
Ta có: \(2n^2-n+2=\)\(2n^2+n-2n-1+3\)\(=n\left(2n+1\right)-\left(2n+1\right)+3\)
Để \(2n^2-n+2⋮2n+1\Rightarrow2n+1\inƯ\left(3\right)\)
Ta có bảng sau:
\(2n+1\) | 1 | -1 | 3 | -3 |
\(2n\) | 0 | -1 | 2 | -4 |
\(n\) | 0 | \(-0,5\)(loại) | 1 | -2 |
cho x+y =1 . tinh gia tri cua bieu thuc A=x^3+y^3+3xy
chox-y=1. tinh gia tri cua bieu thuc B=x^3-y^3-3xy
cho x+y=1 . tinh gia tri cua bieu thuc C=x^3+y^3+3xy(x^2+y^2)+6x^2*y^2(x+y)
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
tinh gia tri bieu thuc :A= [100-1].(100-2 ).[100-3]......[100-n]
A = ( 10 – 1).(100 – 2). (100 – 3) … (100 – n) với n = N* tích trên có đúng 100 thừa số
A = ( 10 – 1).(100 – 2). (100 – 3) … (100 – 100) = 99.98….0 = 0
tinh gia tri bieu thuc
n = ( 1 + can 3 + can 5 ) * ( 1 + can 3 - can 5)
\(n=\left(1+\sqrt{3}+\sqrt{5}\right)\left(1+\sqrt{3}-\sqrt{5}\right)\)
\(n=\left(1+\sqrt{3}\right)^2-\sqrt{5}^2\)
\(n=1+2.\sqrt{3}.1+3-25\)
\(n=4-25+2\sqrt{3}\)
\(n=-21+2\sqrt{3}\)
tim so tu nhien n de de gia tri bieu thuc A la so nguyen to a=n3-2n2+2n-1
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
bai 1 dien vao cho ....
a)1 bieu thuc co 1 phap tinh cong va 1phep tinh tru co gia tri la 50 ....
b)1 bieu thuc co 1phep tinh chia va 1 phep tinh nhan co gia tri la 24......