Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Linh
Xem chi tiết
Thuỳ
15 tháng 5 2018 lúc 17:48

cvfbhm,

park ji eun
23 tháng 3 2021 lúc 14:30

Xin lỗi em ko biết làm , em vẫn chưa lên lớp 9

Khách vãng lai đã xóa
Lê Đức Lương
23 tháng 3 2021 lúc 18:27

1)\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}-1}{\sqrt{a}}\)

Khách vãng lai đã xóa
btrannnn
Xem chi tiết
Diệp Thanh Phong
Xem chi tiết
Meomin111
Xem chi tiết
bamboo
Xem chi tiết
meme
21 tháng 8 2023 lúc 15:19

a/ Để rút gọn biểu thức A, chúng ta có thể thực hiện các bước sau:

Tích hợp tử số và mẫu số trong mỗi phần tử của biểu thức.Sử dụng công thức (a + b)(a - b) = a^2 - b^2 để loại bỏ căn bậc hai khỏi mẫu số.

Áp dụng các bước trên, ta có: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x))

Bây giờ, chúng ta sẽ rút gọn biểu thức này: A = (1/(2√x - 2)) + (1/(2√x + 2)) + (√x/(1 - x)) = [(2√x + 2) + (2√x - 2) + (√x(2√x - 2)(2√x + 2))]/[(2√x - 2)(2√x + 2)(1 - x)] = [4√x + √x(4x - 4)]/[(4x - 4)(1 - x)] = [4√x + 4√x(x - 1)]/[-4(x - 1)(x - 1)] = [4√x(1 + x - 1)]/[-4(x - 1)(x - 1)] = -√x/(x - 1)

b/ Để tính giá trị của A với x = 4/9, ta thay x = 4/9 vào biểu thức đã rút gọn: A = -√(4/9)/(4/9 - 1) = -√(4/9)/(-5/9) = -√(4/9) * (-9/5) = -2/3 * (-9/5) = 6/5

Vậy, khi x = 4/9, giá trị của A là 6/5.

c/ Để tính giá trị của x sao cho giá trị tuyệt đối của A bằng 1/3, ta đặt: |A| = 1/3 |-√x/(x - 1)| = 1/3

Vì A là một số âm, ta có: -√x/(x - 1) = -1/3

Giải phương trình trên, ta có: √x = (x - 1)/3 x = ((x - 1)/3)^2 x = (x - 1)^2/9 9x = (x - 1)^2 9x = x^2 - 2x + 1 x^2 - 11x + 1 = 0

Sử dụng công thức giải phương trình bậc hai, ta có: x = (11 ± √(11^2 - 4 * 1 * 1))/2 x = (11 ± √(121 - 4))/2 x = (11 ± √117)/2

Vậy, giá trị của x để giá trị tuyệt đối của A bằng 1/3 là (11 + √117)/2 hoặc (11 - √117)/2.

Nguyễn Văn Đức
Xem chi tiết
Phương Cute
14 tháng 5 2018 lúc 19:05

Số hạng tổng quát: 1/[n.căn(n-1)+(n-1).căn n] n=1,2,....100 
trục căn thức 1/[n.căn(n-1)+(n-1).căn n] =[n.căn(n-1)-(n-1).căn n] /[n2.(n-1)-(n-1)2.n] 
=[n.căn(n-1)-(n-1).căn n]/(n-1).n(n-n+1)=[n.căn(n-1)-(n-1).căn n]/(n-1).n. 
= 1/ căn(n-1)-1/căn n 
thay số: 
1/(2.căn 1 +1.căn 2)= 1/căn 1 -1/căn 2 
1/(3.căn 2+ 2.căn 3 )= 1/căn 2 -1/căn 3 
........ 
1/(100.căn99 + 99.căn 100)= 1/ căn 99-1/ căn 100 
cộng tổng theo 2 vế được: 
1/(2.căn 1 +1.căn 2) + 1/(3.căn 2+ 2.căn 3 )+...+ 1/(100.căn99 + 99.căn 100)= 1/ căn 1-1/ căn100 
=1-1/10=9/10 

Lê Quỳnh Thanh Ngân
22 tháng 10 2018 lúc 21:17

hơi rối

Đặng Nguyễn Thu Quỳnh
Xem chi tiết
???????
24 tháng 7 2019 lúc 17:16

a)  Có \(x+1< x+2\)

\(\Rightarrow\sqrt{x+1}< \sqrt{x+2}\)

\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+2}}< 1\)

b)  Vì \(\sqrt{x+1}< \sqrt{x+2}\)

\(\Rightarrow\sqrt{x+1}.\sqrt{x+1}.\sqrt{x+2}< \sqrt{x+2}.\sqrt{x+1}.\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{x+1}^2.\sqrt{x+2}< \sqrt{x+2}^2.\sqrt{x+1}\)

\(\Rightarrow\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}< \frac{\sqrt{x+1}}{\sqrt{x+2}}\)

hay \(\frac{\sqrt{x+1}}{\sqrt{x+2}}>\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}\)

Thanh Thu Phan
Xem chi tiết
Trần Nguyễn Bích Ngà
Xem chi tiết