tìm gtnn của A=2x-\(\sqrt{x}\)+3
Tìm GTNN của $A=x+2y-\sqrt{2x-1}-5\sqrt{4y-3}+13$.
Tìm GTNN, GTLN của \(A=\sqrt{2x-4}+\sqrt{3-x}\)
Tìm GTNN của: \(A=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)
ĐK: \(\hept{\begin{cases}-2\le x\le6\\-1\le x\le3\end{cases}}\Leftrightarrow-1\le x\le3\)
Thử bằng máy tính với \(x=-1;0;1;2;3\) thì thấy \(x=0\) thì A có giá trị nhỏ nhất so với các giá trị còn lại.
Từ đó ta có thể thử:
Chứng minh \(A\ge A\left(3\right)\) hay \(A\ge\sqrt{3}\)
\(\Leftrightarrow\sqrt{-x^2+4x+12}\ge\sqrt{3}+\sqrt{-x^2+2x+3}\)
\(\Leftrightarrow-x^2+4x+12\ge3-x^2+2x+3+2\sqrt{3}\sqrt{-x^2+2x+3}\)
\(\Leftrightarrow x+3\ge\sqrt{3\left(-x^2+2x+3\right)}\)
\(\Leftrightarrow x^2+6x+9\ge-3x^2+6x+9\)(tương đương được vì \(x+3\ge-1+3>0\))
\(\Leftrightarrow4x^2\ge0\)
Do bđt cuối đúng nên bđt cần chứng minh là đúng.
Vậy Min A = 3 khi x = 0.
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
Tìm GTNN của A=\(\sqrt{-x^2+2x+8}-\sqrt{-x^2+x+2}\)
Cho các số x,y thỏa mãn\(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\).Tìm GTNN của biểu thức A=\(x^2-xy+y^2+2x+2022\)
Tìm GTNN của $\sqrt{-x^2+4x+12}$ - $\sqrt{-x^2+2x+3}$
Tìm GTNN của A= \(5-\sqrt{3-x^2+2x}\)
\(A=5-\sqrt{3-x^2+2x}\)
\(=5-\sqrt{-\left(x^2-2x-3\right)}\)
\(=5-\sqrt{-\left(x^2-2x+1-4\right)}\)
\(=5-\sqrt{-\left(x-1\right)^2+4}\)
\(A_{min}\Leftrightarrow\sqrt{-\left(x-1\right)^2+4}\)lớn nhất
Mà \(\left(x-1\right)^2\ge0\)\(\Rightarrow-\left(x-1\right)^2\le0\)
\(\Rightarrow-\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)=0\Rightarrow x=1\)
\(\Rightarrow A=5-\sqrt{4}=5-2=3\)
Vậy \(A_{min}=3\Leftrightarrow x=1\)
\(ĐKXĐ:3-x^2+2x\ge0\)
Ta co \(A=5-\sqrt{3-x^2+2x}=5-\sqrt{4-\left(x-1\right)^2}\ge5-\sqrt{4}=3\)
Dau "=" tai x = 1 (Tm ĐKXĐ)
Vay...
Tìm GTLN (nếu có) và GTNN (nếu có) của các biểu thức sau:
a) \(1+\sqrt{2-x},\sqrt{x-3}-2,1-3\sqrt{1-2x}\)
b) \(\sqrt{4-x^2};\sqrt{2x^2-x+3};1-\sqrt{-x^2+2x+5}\)
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
Mong mọi người giúp mình bài này, mình cảm ơn trước ạ.
-Tìm GTLN và GTNN của biểu thức \(A=\sqrt{2x-3}+2\sqrt{3-x}\).
ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)
\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)
\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)
\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)
\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)
\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)