Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Thang
Xem chi tiết
Đức Lộc
Xem chi tiết
Nguyễn Ngọc Linh Nhi
Xem chi tiết
Mr Lazy
30 tháng 8 2016 lúc 8:47

ĐK: \(\hept{\begin{cases}-2\le x\le6\\-1\le x\le3\end{cases}}\Leftrightarrow-1\le x\le3\)

Thử bằng máy tính với \(x=-1;0;1;2;3\) thì thấy \(x=0\) thì A có giá trị nhỏ nhất so với các giá trị còn lại.

Từ đó ta có thể thử: 

Chứng minh \(A\ge A\left(3\right)\) hay \(A\ge\sqrt{3}\)

\(\Leftrightarrow\sqrt{-x^2+4x+12}\ge\sqrt{3}+\sqrt{-x^2+2x+3}\)

\(\Leftrightarrow-x^2+4x+12\ge3-x^2+2x+3+2\sqrt{3}\sqrt{-x^2+2x+3}\)

\(\Leftrightarrow x+3\ge\sqrt{3\left(-x^2+2x+3\right)}\)

\(\Leftrightarrow x^2+6x+9\ge-3x^2+6x+9\)(tương đương được vì \(x+3\ge-1+3>0\))

\(\Leftrightarrow4x^2\ge0\)

Do bđt cuối đúng nên bđt cần chứng minh là đúng.

Vậy Min A = 3 khi x = 0.

Ashshin HTN
13 tháng 8 2018 lúc 16:05

mình biết nội quy rồi nên đưng đăng nội quy

ai chơi bang bang 2 kết bạn với mình

mình có nick có 54k vàng đang góp mua pika 

ai kết bạn mình cho

Nguyễn Thị Huyền Diệp
Xem chi tiết
lê hòag tiến
Xem chi tiết
Nguyễn Văn Nam
Xem chi tiết
Nguyễn Phương Khánh
Xem chi tiết
Phạm Thị Thùy Linh
18 tháng 6 2019 lúc 20:11

\(A=5-\sqrt{3-x^2+2x}\)

\(=5-\sqrt{-\left(x^2-2x-3\right)}\)

\(=5-\sqrt{-\left(x^2-2x+1-4\right)}\)

\(=5-\sqrt{-\left(x-1\right)^2+4}\)

\(A_{min}\Leftrightarrow\sqrt{-\left(x-1\right)^2+4}\)lớn nhất

Mà \(\left(x-1\right)^2\ge0\)\(\Rightarrow-\left(x-1\right)^2\le0\)

\(\Rightarrow-\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)=0\Rightarrow x=1\)

\(\Rightarrow A=5-\sqrt{4}=5-2=3\)

Vậy \(A_{min}=3\Leftrightarrow x=1\)

Incursion_03
18 tháng 6 2019 lúc 20:11

\(ĐKXĐ:3-x^2+2x\ge0\)

Ta co \(A=5-\sqrt{3-x^2+2x}=5-\sqrt{4-\left(x-1\right)^2}\ge5-\sqrt{4}=3\)

Dau "=" tai x = 1 (Tm ĐKXĐ)

Vay...

Võ Thiên Hương
Xem chi tiết
Nguyễn Minh Quang
23 tháng 8 2021 lúc 12:14

a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)

\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)

b. \(0\le\sqrt{4-x^2}\le2\)

\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)

vậy \(GTNN=\frac{\sqrt{46}}{4}\)

ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)

\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)

Khách vãng lai đã xóa
Trần Tuấn Hoàng
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 4 2022 lúc 22:33

ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)

\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)

\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)

\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)

\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)

\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)