Giả sử x=a/b , y=b/m CTR nếu z = a+b/2m ta có x < z <y
Giả sử x=a/m , y=b/m (a,b,m thuộc z , m > 0 ) và x<y . Hãy CTR nếu chọn z=a+b/2m thì có x<z<y
Giả sử x=a/m; y=b/m (a;b;m thuộc Z;m khác 0 ) và x<y. CMR nếu chọn z=a+b/2m thì ta có x<z<y
Giả sử x=a/m; y=b/m (a;b;m thuộc Z;m khác 0 ) và x<y. CMR nếu chọn z=a+b/2m thì ta có x<z<y
x=a/m;y=b/m;x<y nên a<b
nên a+a<a+b
nên 2a/2m<a+b
nên x<z
tương tự có z<y
do đó x<z<y
giả sử x=a/m, y=b/m (a,b thuộc z, m>0) hãy chứng tỏ rằng nếu z = a+b/2m thì ta có x<z<y
Kudo Shinichi
Ta có : x < y hay a/m < b/m => a < b.
So sánh x, y, z ta chuyển chúng cùng mẫu : 2m
x = a/m = 2a/ 2m và y = b/m = 2b/2m và z = ﴾a + b﴿ / 2m
Mà : a < b
Suy ra : a + a < b + a
Hay 2a < a + b
Suy ra x < z ﴾1)
Mà : a < b
Suy ra : a + b < b + b
Hay a + b < 2b
Suy ra z < y ﴾2﴿
ta có : y-x=b/m-a/m=b-a/m=b-a
mà : y>x => y-x>0(là số dương)=>b-a/m>0=>b-a>0
giả thiết đầu tiên : x<z => z-x = a+b/2m-a/m = a+b/2m-2a/2m=b-a/2m>0
=> x<z (1)
giả thiết thứ hai: z<y => y-z = b/m-a+b/2b=2b/2m-a+b/2m=b-a/2m>0
=> z<y (2)
từ (1) và (2) ta suy ra được x<z<y
Giả sử x=a/m, y=b/m (a,b,m thuộc Z, m>0) và x < y. Hãy chứng tỏ nếu z= a+b/2m thì ta có x<z<y.
x=a/m=2a/2m y=b/m=2b/2m
x<y nên a<b
=>2a<a+b và =>a+b<2b
=>2a/2m < a+b/2m < 2b/2m
=>x<y<z ( đpcm)
giả sử x=a/m; y=b/m (a,b,m thuộc Z, m>0) và x<y. Hãy chứng tỏ nếu z=(a+b)/2m thì ta có x<z<y
Giả sử x = \(\dfrac{a}{m}\), y = \(\dfrac{b}{m}\)(a, b, m \(\in\) Z, m > 0) và x < y. Hãy chứng tỏ rằng nếu chọn z = \(\dfrac{a+b}{2m}\) thì ta có x < z < y
Hướng dẫn: Sử dụng tính chất: Nếu a, b, c \(\in\) Z và a < b thì a + c < b + c
Giúp mk nốt câu này nhé
Giả sử x=a/m;y=b/m(a,b,m thuộc Z,m>0) và x<y.Chứng tỏ rằng:
Nếu z=a+b/2m thì ta có x<z<y
Giả sử x = a/b, y = b/m (a,b,m thuộc Z, m > 0) và x< y. Hãy chứng tỏ rằng nếu chọn Z = a+b/2m thì ta có x<z<y