Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Trà
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 4 2019 lúc 23:59

\(S=\frac{a^2}{a+ab}+\frac{b^2}{b+ab}+\frac{1}{a+b}\ge\frac{\left(a+b\right)^2}{a+b+2ab}+\frac{1}{a+b}\ge\frac{\left(a+b\right)^2}{a+b+\frac{\left(a+b\right)^2}{2}}+\frac{1}{a+b}\ge\frac{1}{1+\frac{1}{2}}+1=\frac{5}{3}\)

\(\Rightarrow S_{min}=\frac{5}{3}\) khi \(a=b=\frac{1}{2}\)

Bạch Dạ Y
Xem chi tiết
Nguyễn Hùng Kỳ
Xem chi tiết
Trần Đình Thuyên
25 tháng 7 2017 lúc 14:35

\(S=\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\)

\(S=\left(1+\frac{1}{1-b}\right)\left(1+\frac{1}{1-a}\right)\)

\(S=\frac{1-b+1}{1-b}\times\frac{1-a+1}{1-a}\)

\(S=\frac{\left(2-b\right)\left(2-a\right)}{\left(1-b\right)\left(1-a\right)}\)

\(S=\frac{4-2a-2b+ab}{1-a-b+ab}=\frac{4-2\left(a+b\right)+ab}{1-\left(a+b\right)+ab}\)

\(S=\frac{4-2+ab}{1-1+ab}=\frac{2+ab}{ab}=1+\frac{2}{ab}\)(*)

 từ \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow4ab\le1\Leftrightarrow ab\le\frac{1}{4}\Leftrightarrow\frac{1}{ab}\ge4\)

\(\Leftrightarrow\frac{2}{ab}\ge8\)(1)

thay (1) vào (*) có

\(S=1+\frac{2}{ab}\ge1+8=9\)

vậy GTNN của \(S=9\Leftrightarrow x=y=\frac{1}{2}\)

Nguyễn Hùng Kỳ
26 tháng 7 2017 lúc 20:54

Cảm ơn bạn vì đã giúp đỡ mình! Thanks very much!

Phạm Thị Hằng
Xem chi tiết
vũ tiền châu
22 tháng 9 2017 lúc 20:13

a)  ta có \(S=a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

 Áp dụng bất đẳng thức cô si ta có \(a+\frac{1}{4a}\ge2\sqrt{\frac{a.1}{4a}}=2.\frac{1}{2}=1\)

tương tự ta có \(b+\frac{1}{4b}\ge1;c+\frac{1}{4c}\ge1\)

=> \(a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}\ge3\)

mặt khác Áp dụng bất đẳng thức svác sơ ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{\frac{3}{2}}=6\) (vì a+b+c<=3/2)

cộng từng vế ta có \(S\ge9\)

dấu = xảy ra <=> a=b=c=1/2

câu 2 tương tự

vũ tiền châu
22 tháng 9 2017 lúc 20:15

chết quên khi mà cậu dùng svác sơ xong thì cậu phải nhân thêm 3/4 nữa rồi mới cộng vào để tính Smin

Thầy Tùng Dương
Xem chi tiết
Dương Ngọc Hảo
15 tháng 5 2021 lúc 8:43

undefined

Khách vãng lai đã xóa
Nguyễn Huy Trường Hiếu
22 tháng 10 2021 lúc 16:06

loading...

 

Khách vãng lai đã xóa
Vũ Đức Anh
18 tháng 4 2022 lúc 20:32

1x+1y≥4x+y,x,y>0.

Dấu "=" xảy ra ⇔x=y. ( Chứng minh bằng phương pháp biến tổi tươg đuơng)

M=1a2+b2+2ab+4ab +)  +) 

Kakashi
Xem chi tiết
Phan Nghĩa
1 tháng 9 2020 lúc 14:46

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{a}{1+b}+\frac{4}{9}.a\left(1+b\right)\ge2\sqrt{\frac{a.4.a.\left(1+b\right)}{\left(1+b\right)9}}=2\sqrt{\frac{4a^2}{3^2}}=\frac{4a}{3}\)

\(\frac{b}{1+a}+\frac{4}{9}.b\left(1+a\right)\ge2\sqrt{\frac{b.4.b.\left(1+a\right)}{\left(1+a\right)9}}=2\sqrt{\frac{2^2b^2}{3^2}}=\frac{4b}{3}\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(\frac{a}{1+b}+\frac{b}{1+a}+\frac{4}{9}.a\left(1+b\right)+\frac{4}{9}.b\left(1+a\right)\ge\frac{4a}{3}+\frac{4b}{3}\)

\(< =>\frac{a}{1+b}+\frac{b}{1+a}\ge\frac{4a}{3}-\frac{4}{9}\left(a+ab\right)-\frac{4}{9}\left(b+ab\right)+\frac{4b}{3}\)

\(< =>\frac{a}{1+b}+\frac{b}{1+a}\ge\frac{8a}{9}+\frac{8b}{9}-\frac{4}{9}ab-\frac{4}{9}ab\)

\(< =>S\ge\frac{1}{a+b}+\frac{8}{9}\left(a+b\right)-\frac{8}{9}ab=\left(\frac{1}{a+b}+a+b\right)-\frac{a+b+8ab}{9}\)

\(< =>S\ge2-\frac{a+b+8ab}{9}\)

Do \(4ab\le\left(a+b\right)^2\le1< =>a+b+8ab\le3\)

Khi đó ta được : \(S\ge2-\frac{3}{9}=2-\frac{1}{3}=\frac{5}{3}\).Đẳng thức xảy ra \(< =>a=b=\frac{1}{2}\)

Vậy GTNN của \(S=\frac{5}{3}\)đạt được khi \(a=b=\frac{1}{2}\)

Khách vãng lai đã xóa
Thầy Tùng Dương
Xem chi tiết
nhật linh
14 tháng 5 2021 lúc 10:03

\(M=\frac{1}{a^2+b^2}+\frac{2}{ab}+4ab\)

\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{5}{4ab}\)

\(\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{5}{4ab}\)

( Nếu đi thi thì sẽ phải chứng minh \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) cái này nhân chéo và cô si là xong )

Ta có BĐT phụ: \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( đúng )

\(\Rightarrow M\ge\frac{4}{1}+2+5=11\)

Dấu "=" xảy ra <=> a=b=1/2 

Vậy ...

Khách vãng lai đã xóa
huong ho
Xem chi tiết
Thiên An
8 tháng 7 2017 lúc 22:31

thiếu đề bn ơi: a+b+c=?

huong ho
28 tháng 7 2017 lúc 9:55

HIHI viết thiếu nhưng mk ra rồi cảm ơn ạ !

Thiên An
28 tháng 7 2017 lúc 10:01

uk, bn dùng UCT là ra mà

Tường Nguyễn Thế
Xem chi tiết