Tìm GTNN: \(\frac{5x-3}{\sqrt{1-x^2}}\)
Bài 1 : Cho biểu thức R = \(\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\cdot\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a/ Rút gọn R
b/ Tìm các giá trị của x để R < -1
Bài 2 : Cho \(\sqrt{x^2-5x+14}-\sqrt{x^2-5x+10}=2\)Tính giá trị biểu thức M =\(\sqrt{x^2-5x+14}+\sqrt{x^2-5x+10}\)
Bài 3 : Tìm GTNN của : Q = \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)
\(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a/ \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt[]{x-3}\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt[]{x-3}}\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
=> \(R=\left[\frac{2\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-3}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
=> \(R=\frac{3\sqrt{x}-3}{\sqrt{x}-3}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
b/ Để R<-1 => \(\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< -1\)
<=> \(3\sqrt{x}-3< -\sqrt{x}-1\)
<=> \(4\sqrt{x}< 2\)=> \(\sqrt{x}< \frac{1}{2}\) => \(-\frac{1}{4}< x< \frac{1}{4}\)
Chỗ => R = \(\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\) là sao vậy ạ?
Thì \(\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt{x}-3}=\frac{\sqrt{x}-3}{\sqrt{x}-3}=1\)
MỌI NGƯỜI GIÚP MK VS Ạ , mk cần rất gấp . cảm ơn các bạn nha
câu 1, tìm GTNN của M=x^2-5x+y^2-xy-5x-4y+2014
câu 2, cho x,y,z>0 và x+y+z=1. Tìm GTNN của S=1/x +4/y + y/z
câu 3. cho pt x^2-5x+m-2=0
tìm m để pt có 2 nghiệm dương phân biệt thõa mãn \(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)
Điều kiện có 2 nghiệm phân biệt tự làm nha
Theo vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=5\\x_1.x_2=m-2\end{cases}}\)
\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)
\(\Leftrightarrow4\left(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}\right)=9\)
\(\Leftrightarrow4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)
Làm nốt nhé
Câu 1:
M=\(\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(4x^2-4x+1\right)+2014\)
=\(\left(\left(x+y\right)^2+2\left(x+y\right)+1\right)+\left(2x-1\right)^2+2014\)
=\(\left(x+y+1\right)^2+\left(2x-1\right)^2+2014\ge2014\)
\(\Rightarrow M\ge2014\Leftrightarrow minM=2014\)
\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\2x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,5\\y=1,5\end{cases}}\)
2/ \(S=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=9\)
Cho x>= \(\frac{1}{7}\).Tìm GTNN của
A =\(\sqrt{x-1}+\sqrt{2x^2-5x+7}\)
cho biểu thức
\(K=\)\(\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a. Tìm ĐKXĐ, rút gọn K
b. Tìm x để K< -1
c. Tìm x để K có GTNN, tìm GTNN đó
a. ĐKXĐ \(x\ge0\)và \(x\ne9\)
Ta có \(K=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(x-2\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
b. Để \(K< -1\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\Rightarrow4\sqrt{x}-6< 0\)vì \(\sqrt{x}+3\ge3\)
\(\Rightarrow0\le x< \frac{9}{4}\left(tm\right)\)
Vậy với \(0\le x< \frac{9}{4}\)thì K<-1
c. \(K=\frac{3\sqrt{x}-9}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)
Ta có \(\sqrt{x}+3\ge3\Rightarrow\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\Rightarrow-\frac{18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\)
\(\Rightarrow K\ge-3\)
Vậy \(MinK=-3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
Cho x,y,z>0 thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)\(1\).Tìm GTNN của:
\(A=\sqrt{\frac{x^2}{5x+32\sqrt{xy}+12y}}+\sqrt{\frac{y^2}{5y+32\sqrt{yz}+12z}}+\sqrt{\frac{z^2}{5z+32\sqrt{zx}+12x}}\)
cho \(x\ge-\dfrac{1}{3}\). tìm GTNN của \(E=5x-6\sqrt{2x+7}-4\sqrt{3x-1}+2\)
Bạn xem lại ĐKĐB. Nếu $x\geq \frac{-1}{3}$ thì mình nghi ngờ $\sqrt{3x-1}$ của bạn viết là $\sqrt{3x+1}$Còn nếu đúng là $\sqrt{3x-1}$ thì ĐK cần là $x\geq \frac{1}{3}$.
a,Tìm GTNN của \(P=\frac{x}{\sqrt{x}+1}\left(x>1\right)\)
b,Tìm GTLN của \(D=\frac{\sqrt{x-9}}{5x}\)
a,\(\frac{x}{\sqrt{x}+1}=\frac{x-1+1}{\sqrt{x}-1}=\sqrt{x}+1+\frac{1}{\sqrt{x}+1}\)
\(=\left(\sqrt{x}-1\right)+\frac{1}{\sqrt{x}-1}+2\ge2.\sqrt{\left(\sqrt{x}-1\right).\frac{1}{\sqrt{x}-1}+2}\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-1=\frac{1}{\sqrt{x}-1}\)
\(\Leftrightarrow\sqrt{x}-1=1\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\left(t/m\right)\)
Dmin = 4 <=> x=4
b,\(\frac{\sqrt{x-9}}{5x}\)
\(\sqrt{x-9}=\sqrt{\frac{\left(x-9\right).9}{9}}=\frac{1}{3}.\sqrt{\left(x-9\right).9}\le\frac{1}{3}.\frac{x-9+9}{2}=\frac{x}{2}\)
\(\Rightarrow D\le\frac{x}{\frac{6}{5x}}=\frac{x}{30x}=\frac{1}{30}\)
Dấu "=" xảy ra \(\Leftrightarrow x-9=9\Leftrightarrow x=18\)
Dmax=\(\frac{1}{30}\Leftrightarrow x=18\)
P/s : ko chắc lắm
\(a)\)\(P=\frac{x}{\sqrt{x}+1}=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}-\frac{2\sqrt{x}+2}{\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\)
\(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\frac{1}{\sqrt{x}+1}\)
\(P=\sqrt{x}+1+\frac{1}{\sqrt{x}+1}-2\ge2\sqrt{\left(\sqrt{x}+1\right).\frac{1}{\sqrt{x}+1}}-2=2-2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\sqrt{x}+1=\frac{1}{\sqrt{x}+1}\)\(\Leftrightarrow\)\(x=0\)
...
ĐKXĐ : \(x\ne0\)
\(b)\)\(D=\frac{\sqrt{x-9}}{5x}\ge\frac{0}{5x}=0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\sqrt{x-9}=0\)\(\Leftrightarrow\)\(x=9\)
...
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
\(A=\frac{x\sqrt{x}-3}{x+2\sqrt{x}+3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
tìm GTNN của A