Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị quỳnh
Xem chi tiết
khánh huyền nguyễn
Xem chi tiết
Đỗ Thị Hương Xuân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 11 2017 lúc 17:07

⇔ x(a − d) − 2x(a − c) + 3x(a − b) = 4a(a − b)

⇔ x(a − d − 2a + 2c + 3a − 3b) = 4a(a − b)

⇔ x(2a − 3b + 2c − d) = 4a(a − b)

Theo giả thiết, b + d = 2c nên 2a – 3b + 2c – d = 2a – 2b = 2 (a – b ).

Do đó phương trình đã cho tương đương với phương trình 2(a − b)x = 4a(a − b)

Để ý rằng a – b ≠ 0, ta thấy ngay phương trình cuối có nghiệm duy nhất x = 2a.

Vậy phương trình đã cho cũng có nghiệm duy nhất x = 2a.

Do Nguyen Minh Khang
Xem chi tiết
Phạm Vũ Ngọc Duy
Xem chi tiết
Ngô Tấn Đạt
17 tháng 5 2017 lúc 8:09

Đặt \(A=4a^2+4a+15\)

\(\Rightarrow A=4a\left(a+1\right)+15\)

\(a\left(a+1\right)⋮2\)( vì a và a+1 là 2 số tự nhiên liên tiếp)

\(\Rightarrow4a\left(a+1\right)⋮8\\ \)

Mà 15 chia 8 dư 7

\(\Rightarrow A\) chia 8 dư 7

\(\Rightarrow A\) không là số chính phương vì số chính phương chia 8 dư 0 ,1,4

\(\Rightarrow a\in\varnothing\)

Anh Triêt
17 tháng 5 2017 lúc 10:53

Đặt: \(4a^2+4a+15=k^2\left(k\in N\right)\)

\(\Rightarrow4a^2+2a+2a+1+14=k^2\)

\(\Rightarrow2a\left(2a+1\right)+\left(2a+1\right)+14=k^2\)

\(\Rightarrow\left(2a+1\right)\left(2a+1\right)+14=k^2\)

\(\Rightarrow\left(2a+1\right)^2-k^2=-14\) ( * )

Ta sẽ chứng minh: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

Thật vậy, ta có: \(a^2-b^2=a^2-ab+ab-b^2=a\left(a-b\right)+b\left(a-b\right)=\left(a-b\right)\left(a+b\right)\)

\(\RightarrowĐpcm\)

Áp dụng vào (*), có: \(\left(2a+1-k\right)\left(2a+1+k\right)=-14\)

\(a,k\in N\) nên \(2a+1+k\in N\)

\(\Rightarrow2a+1-k,2a+1+k\inƯ\left(14\right)\)
Có: \(-14=\left(-14\right).1=\left(-7\right).2=\left(-2\right).7=\left(-1\right).14\)

Mặt khác, \(2a+1-k,2a+1+k\) là hai số cùng tính chẵn lẻ mà ta thấy khi phân tích \(-14\) thành thừa số nguyên tố thì nó đều là tích của một số chẵn và một số lẻ

\(\Rightarrow\) Không tồn tại \(a\)\(k\) thỏa mãn.

Vậy không tồn tại \(a\) thỏa mãn đề bài.

Trần Long Vũ
Xem chi tiết
Trần Long Vũ
Xem chi tiết
Tao yêu Nó
Xem chi tiết