Chứng minh phương trình: x2 - 6 = 0 không có ngiệm hữu tỉ.
Chứng minh phương trình: x2 - 5 = 0 không có ngiệm hữu tỉ.
Theo bài ra ta có: \(x^2-5=0\Rightarrow x^2=5\Rightarrow x=\sqrt{5}\)
Vì \(\sqrt{5}\)là số thực nên phương trình đã cho không có nghiệm hữu tỉ
\(x^2-5=0\)
\(\Rightarrow x^2=5\)
\(\Rightarrow x=\pm\sqrt{5}\)
kết quả đã cho là số vô tỉ vậy .....
Conan sai nhá đây là phương trình bậc 2 nhá phải có 2 nghiệm Và số thực bao gồm cả số vô tỉ nhá sai kiến thức rồi kìa cha ơi
Vl
Cho p= abc (có gạch trên đầu) là một số nguyên tố. Chứng minh rằng phương trình ax^2+ bx+c=0 không có nghiệm hữu tỉ
Ta có:Δ=b2−4acΔ=b2−4ac
Xét Δ≥0Δ≥0
giả sử pt đó có nghiệm hữu tỉ nên Δ=x2Δ=x2
Suy ra (b+x)(b−x)=4ac(b+x)(b−x)=4ac
Vì b,x cùng tính chẵn lẽ nên b+x chẵn;b-x chẵn
Ta xét các TH sau:
{b+x=ab−x=4c{b+x=ab−x=4c
mà b+x≥b−x⇒a≥4cb+x≥b−x⇒a≥4c nên c=1 (vì c lẻ )
Thay c=1 vào ta đc: {b=a2+2x=a2−2{b=a2+2x=a2−2
Thế vào ta tìm đc a=0(vô lý)
Xét {b+x=2acb−x=2{b+x=2acb−x=2
tương tự ta cũng có: 2ac≥2⇒ac≥1⇒a=1;c=12ac≥2⇒ac≥1⇒a=1;c=1
tính đc b=2 khi đó ¯¯¯¯¯¯¯¯abc=121=112abc¯=121=112 ko phải là số nguyên tố
Xét {b+x=2ab−x=2c{b+x=2ab−x=2c
Ta chứng minh đc a>c
Suy ra b=a+c
khi đó ¯¯¯¯¯¯¯¯abc=110a+11c⋮11abc¯=110a+11c⋮11 ko phải là số nguyên tố.
Vậy điều giả sử sai nên ta có đpcm
Cho hai phương trình: x2-5x+6=0 (1)
x+(x-2)(2x+1)=2 (2)
a) Chứng minh hai phương trình có nghiệm chung là x=2
b) Chứng minh: x=3 là nghiệm của (1) nhưng không là nghiệm của (2).
c) Hai phương trình đã cho có tương đương với nhau không, vì sao?
a:
Thay x=2 vào (1), ta được:
\(2^2-5\cdot2+6=0\)(đúng)
Thay x=2 vào (2), ta được:
\(2+\left(2-2\right)\cdot\left(2\cdot2+1\right)=2\)(đúng)
b: (1)=>(x-2)(x-3)=0
=>S1={2;3}
(2)=>\(x+2x^2+x-4x-2-2=0\)
\(\Leftrightarrow x^2+x-2=0\)
=>(x+2)(x-1)=0
=>S2={-2;1}
vậy: x=3 là nghiệm của (1) nhưng không là nghiệm của (2)
Cho phương trình \(ax^2+bx+c=0\) có các hệ số a, b, c là các số nguyên lẻ. Chứng minh rằng nếu phương trình có nghiệm thì các nghiệm ấy không thể là số hữu tỉ.
BÀI TOÁN PHỤ: CHứng minh rằng số chính phương lẻ chia cho 8 dư 1.
Giải: Xét số chính phương lẻ là \(m^2\left(m\in Z\right)\)
Như vậy m là số lẻ, đặt \(m=2n+1\)
Ta có:
\(m^2=\left(2n+1\right)^2=4n^2+4n+1=4.n.\left(n+1\right)+1\)
Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2
\(\Rightarrow4n\left(n+1\right) \) chia hết cho 8
\(\Rightarrow4.n.\left(n+1\right)+1\) chia 8 dư 1
Vậy ta có điều phải chứng minh.
Vì a lẻ nên \(a\ne0\), phương trình \(ax^2+bx+c=0\) là phương trình bậc hai.
Xét \(\Delta=b^2-4ac\): b lẻ, theo bài toán phụ có \(b^2=8k+1\left(k\in Z\right)\)
a,c lẻ \(\Rightarrow\) \(ac\) lẻ
Đặt \(ac=2l-1\left(l\in Z\right)\)
Do đó \(\Delta=b^2-4ac=8k+1-4.\left(2l-1\right)=8k+1-8l+4=8\left(k-l\right)+5 \)chia cho 8 dư 5, theo bài toán phụ trên ta có \(\Delta\) không phải số chính phương.
\(\Delta\) là số nguyên, không phải óố chính phương \(\Rightarrow\sqrt{\Delta}\) là số vô tỉ
Nghiệm của phương trình đã cho (nếu có) là: \(x=\frac{-b\pm\sqrt{\Delta}}{2a}\)
b,a\(\in Z\), \(\sqrt{\Delta}\) vô tỉ nên x là vô tỉ.
Vậy phương trình có nghiệm nếu có thì các nghiệm ấy không thể là số hữu tỉ.
ơng là phươngax2+bx+c=0
Bài này có sự liên quan giữa các số lẻ a;b;c không? ( không = khó )
ax^2 +bx +c = 0 (*)
(*) có nghiệm hữa tỷ <=> Δ = b^2 - 4ac là số chính phương lẻ
(vì 4ac chẵn và b lẻ)
Δ là số chính phương lẻ nên Δ chia 8 dư 1 (*)
với a, b , c là số nguyên lẻ nên có dạng:
a = 2m + 1; b = 2n +1; c = 2p + 1 ( m,n,p là số nguyên)
=> Δ = (2n +1)^2 - 4(2m+1)(2p+1)
= 4n^2 + 4n + 1 - 4(4mp + 2m + 2p + 1)
= 4n(n+1) - 8(mp + m + p) - 3 = 4n(n+1) - 8(mp + m + p) - 8 + 5
vì 4n(n+1) - 8(mp + m + p) - 8 chia hết cho 8 => Δ chia 8 dư 5 mâu thuẩn với (*)
=> đpcm.
-------------------------
chứng minh (*):
A = (2k+1)^2 = 4k^2 + 4k + 1 = 4k(k + 1) + 1
k(k + 1) là tích 2 số nguyên liêu tiếp chia hết cho 2
=> 4k(k + 1) chia hết cho 8
=> A chia 8 dư 1
x2−2(2m−3)x+4-2m chưng minh phương trình có hai ngiệm phân biệt
\(\Delta=\left(4m-6\right)^2-4\left(4-2m\right)\)
=16m^2-48m+36-16+8m
=16m^2-40m+20
=4(4m^2-10m+5)
=4(4m^2-2*2m*2,5+6,25-1,25)
=4(2m-2,5)^2-5
Do đó: Phương trình chưa chắc có hai nghiệm pb nha bạn
Câu 2. (1,0 điểm) Cho phương trình 2x2 – 3x –
6 = 0 (1) (m là tham số)
a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt.
b) Gọi x1; x2 là hai nghiệm của phương trình (1).
Không giải phương trình, hãy tính giá trị của biểu thức: .
a: a*c<0
=>(1) có hai nghiệm phân biệt
b: Bạn viết lại biểu thức đi bạn
cho các phương trình x^2+mx+ nvà x^2+px+q trong đó m,n,p,q là các số hữu tỉ sao cho (m-p)^2+(n-q)^2 > 0. Chứng minh rằng nếu hai phương trình có một nghiệm chung thì các nghiệm còn lại của hai phương trình là hai số hữu tỉ phân biệt
cho các phương trình x^2+mx và x^2+px+q trong đó m,n,p,q là các số hữu tỉ sao cho (m-p)^2+(n-q)^2 > 0. Chứng minh rằng nếu hai phương trình có một nghiệm chung thìcacs nghiệm còn lại của hai phương trình là hai số hữu tỉ phân biệt
Chắc pt đầu là x^2+mx+n (:))
Từ điều kiện ta có m khác p, n khác q
Gọi a là nghiệm chung của 2 pt=> a^2+ma+n=a^2+pa+q=0=> a(m-p)=q-n=>a=(q-n)/(m-p)
Mà m,n,p,q là các số hữu tỉ=> a là số hữu tỉ
Gọi b là nghiệm còn lại của pt (:))Theo hệ thức Vi-ét:a*b=n là số hữu tỉ=> b là số hữu tỉ
cmtt ta có nghiệm còn lại của pt còn lại cũng là số hữu tỉ
cho các phương trình x^2+mx+ n và x^2+px+q trong đó m,n,p,q là các số hữu tỉ sao cho (m-p)^2+(n-q)^2 > 0. Chứng minh rằng nếu hai phương trình có một nghiệm chung thì các nghiệm còn lại của hai phương trình là hai số hữu tỉ phân biệt