Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dinh thao Quyen
Xem chi tiết
Bye My Love
Xem chi tiết
Nguyen Thi Hong
Xem chi tiết
soyeon_Tiểubàng giải
11 tháng 12 2016 lúc 9:24

a) + Nếu x + y + z = 0 thay vào đề bài ta được x = y = z = 0

+ Nếu x + y + z khác 0, áp dụng t/c của dãy tỉ số = nhau ta có:

x/z+y+1 = y/x+z+1 = z/x+y-2 = x+y+z/(z+y+1)+(x+z+1)+(x+y-2)

= x+y+z/2.(x+y+z) = 1/2 = x+y+z

=> 2x = z+y+1; 2y = x+z+1; 2z = x+y-2

=> 3x = x+y+z+1; 3y = x+y+z+1; 3z=x+y+z-2

=> 3x=1/2+1=3/2; 3y=1/2+1=3/2; 3z=1/2-2=-3/2

=> x=1/6 = y; z = -1/2

b) Theo bài ra ta có:

x + 1/x = k (k thuộc Z)

=> x^2+1/x = k

+ Với k = 0 => x = 0 (thỏa mãn)

+ Với k khác 0, do k nguyên nên x^2+1/x nguyên

=> x^2+1 chia hết cho x

=> 1 chia hết cho x

=> x thuộc {1 ; -1} (thỏa mãn)

Vậy số hữu tỉ x cần tìm là 0; 1; -1

Kudo Shinichi
Xem chi tiết
Bùi Thế Hào
13 tháng 4 2017 lúc 22:53

X=1, y=1; z=2

Và : x=2; y= 2; z=1

Nguyễn Bảo Ninh
14 tháng 4 2017 lúc 5:41

X=1y=1;z=2

Và :x=2;y=2;z1

Nguyễn Bảo Ninh
14 tháng 4 2017 lúc 5:43

X=1y=1z1

Và :x=2=2:z1

Nguyễn Thị Hồng Linh
Xem chi tiết
Hoàng Long
24 tháng 6 2019 lúc 9:32

#) Giải

Giả sử tồn tại x, y, z thỏa mãn đk đầu bài => 1 / x + 1 / y = 1 / z (x, y, z ≠ 0) 
=> z(x + y) = xy 
Không thể có |z| > 1 vì lúc đó z có ít nhất 1 ước nguyên tố p ≥ 2 => p phải là ước của x hoặc y, vô lý vì (x, z) = (y, z) = 1. Vậy z = -1, 1 
Với z = -1 => -(x + y) = xy => (x + 1)(y + 1) = 1 => x + 1 = -1, y + 1 = -1 
=> x = y = -2 => x, y có chung ước 2, vô lý vì (x, y) = 1 
Với z = 1 => x + y = xy => (x - 1)(y - 1) = 1 
=> x - 1 = 1 và y - 1 = 1 => x = y = 2, vô lý vì (x, y) = 1 
Vậy không tồn tại x, y, z thỏa đk bài toán 

~ Hok tốt ~

kham khảo ở đây nha

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

vào thống kê hỏi đáp của mình nhấn zô chữ xanh trong câu trả lời này 

hc tốt ~:B~

Giả sử tồn tại x, y, z thỏa mãn đk đầu bài => 1 / x + 1 / y = 1 / z (x, y, z ≠ 0) 
=> z(x + y) = xy 
Không thể có |z| > 1 vì lúc đó z có ít nhất 1 ước nguyên tố p ≥ 2 => p phải là ước của x hoặc y, vô lý vì (x, z) = (y, z) = 1. Vậy z = -1, 1 
Với z = -1 => -(x + y) = xy => (x + 1)(y + 1) = 1 => x + 1 = -1, y + 1 = -1 
=> x = y = -2 => x, y có chung ước 2, vô lý vì (x, y) = 1 
Với z = 1 => x + y = xy => (x - 1)(y - 1) = 1 
=> x - 1 = 1 và y - 1 = 1 => x = y = 2, vô lý vì (x, y) = 1 
Vậy không tồn tại x, y, z thỏa đk bài toán hay x+y không phải số chính phương

nguồn : Câu hỏi của Quân Đặng - Toán lớp 7 - Học toán với OnlineMath

Nguyen tuan cuong
Xem chi tiết
Lê Văn Phong
Xem chi tiết
Nguyễn Thị Ngọc	Hân
2 tháng 3 2022 lúc 20:47

guyrt8yfjgdfjvxkfjghdgfkg123456781548656

Khách vãng lai đã xóa
Trần Thị Cẩm ly
Xem chi tiết
Bạch Dương 2k7 ( 6C Bạch...
Xem chi tiết