timf nghiệm nguyên dương x,y,z sao cho 1/x=1/y=1/z=1
Giải phương trình nghiệm nguyên dương :
a) x+1/(y+1/z)= 21/16
b) x+1/(y+1/(z-1/t))
Tìm các số nguyên dương x y z sao cho 1/x+1/y=z
tìm x,,z biết
x/ z+y+1 = y/ x+z+1 = z/x+y-2 =x+y+z (x,y,z khác 0)
b. timf số hữu tỉ x biết rằng tổng số của số đó với số nghịch đảo của nó là một số nguyên
a) + Nếu x + y + z = 0 thay vào đề bài ta được x = y = z = 0
+ Nếu x + y + z khác 0, áp dụng t/c của dãy tỉ số = nhau ta có:
x/z+y+1 = y/x+z+1 = z/x+y-2 = x+y+z/(z+y+1)+(x+z+1)+(x+y-2)
= x+y+z/2.(x+y+z) = 1/2 = x+y+z
=> 2x = z+y+1; 2y = x+z+1; 2z = x+y-2
=> 3x = x+y+z+1; 3y = x+y+z+1; 3z=x+y+z-2
=> 3x=1/2+1=3/2; 3y=1/2+1=3/2; 3z=1/2-2=-3/2
=> x=1/6 = y; z = -1/2
b) Theo bài ra ta có:
x + 1/x = k (k thuộc Z)
=> x^2+1/x = k
+ Với k = 0 => x = 0 (thỏa mãn)
+ Với k khác 0, do k nguyên nên x^2+1/x nguyên
=> x^2+1 chia hết cho x
=> 1 chia hết cho x
=> x thuộc {1 ; -1} (thỏa mãn)
Vậy số hữu tỉ x cần tìm là 0; 1; -1
tìm các số nguyên dương x,y,z sao cho 1/x+1/y=z
Cho x,y,z là ba số nguyên dương nguyên tố cùng nhau t/m 1/x+1/y=1/z. Hỏi x+y có là số chính phương không? Vì sao?
#) Giải
Giả sử tồn tại x, y, z thỏa mãn đk đầu bài => 1 / x + 1 / y = 1 / z (x, y, z ≠ 0)
=> z(x + y) = xy
Không thể có |z| > 1 vì lúc đó z có ít nhất 1 ước nguyên tố p ≥ 2 => p phải là ước của x hoặc y, vô lý vì (x, z) = (y, z) = 1. Vậy z = -1, 1
Với z = -1 => -(x + y) = xy => (x + 1)(y + 1) = 1 => x + 1 = -1, y + 1 = -1
=> x = y = -2 => x, y có chung ước 2, vô lý vì (x, y) = 1
Với z = 1 => x + y = xy => (x - 1)(y - 1) = 1
=> x - 1 = 1 và y - 1 = 1 => x = y = 2, vô lý vì (x, y) = 1
Vậy không tồn tại x, y, z thỏa đk bài toán
~ Hok tốt ~
kham khảo ở đây nha
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
vào thống kê hỏi đáp của mình nhấn zô chữ xanh trong câu trả lời này
hc tốt ~:B~
Giả sử tồn tại x, y, z thỏa mãn đk đầu bài => 1 / x + 1 / y = 1 / z (x, y, z ≠ 0)
=> z(x + y) = xy
Không thể có |z| > 1 vì lúc đó z có ít nhất 1 ước nguyên tố p ≥ 2 => p phải là ước của x hoặc y, vô lý vì (x, z) = (y, z) = 1. Vậy z = -1, 1
Với z = -1 => -(x + y) = xy => (x + 1)(y + 1) = 1 => x + 1 = -1, y + 1 = -1
=> x = y = -2 => x, y có chung ước 2, vô lý vì (x, y) = 1
Với z = 1 => x + y = xy => (x - 1)(y - 1) = 1
=> x - 1 = 1 và y - 1 = 1 => x = y = 2, vô lý vì (x, y) = 1
Vậy không tồn tại x, y, z thỏa đk bài toán hay x+y không phải số chính phương
nguồn : Câu hỏi của Quân Đặng - Toán lớp 7 - Học toán với OnlineMath
Tìm 3 số nguyên dương \(\ne\)nhau x,y,z sao cho 1/x+1/y+1/z là 1 số nguyên.
tìm x;y;z nguyên dương sao cho xy+1 chia hết cho z ; xz + 1 chia hết cho y ; yz + 1 chia hết cho x
guyrt8yfjgdfjvxkfjghdgfkg123456781548656
Tìm các số nguyên dương x;y;z sao cho 2(y+z)=x(yz-1)
cho x y z thuộc số nguyên dương với x>y>z
để 1/x+1/y+1/z=1 tìm x,y,z