Nếu a+b >=2 thì ít nhất một trong hai phương trình có nghiệm
\(x^2+2ax+b=0\)
\(x^2+2bx+a=0\)
Chứng minh rằng: Nếu a+b\(\ge\)2 thì ít nhất một trong hai phương trình sau có nghiệm: \(x^2+2ax+b=0\)và \(x^2+2bx+a=0\)
Cho a,b,c là các số thực dương phân biệt có tổng bằng 3. Chứng minh rằng trong ba phương trình \(x^2-2ax+b=0;x^2-2bx+c;x^2-2cx+a=0\)
có ít nhất một phương trình có hai nghiệm phân biệt và ít nhất một phương trình vô nghiệm
* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có :
pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)
pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)
pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)
\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*)
Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)
\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)
trái với (*)
Vậy có ít nhất một phương trình có hai nghiệm phân biệt
cái kia chưa bt làm -_-
nhầm r >_< sửa lại chỗ này nhé
Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)< 0\\b\left(3-b\right)< 0\\c\left(3-c\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}3a< a^2\\3b< b^2\\3c< c^2\end{cases}}}\)
\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)>3\left(a+b+c\right)-\left(a+b+c\right)=6>0\) :))
Chứng minh rằng với a, b, c khác 0, ít nhất một trong các phương trình sau có nghiệm.
\(ax^2+2bx+c=0\),\(bx^2+2cx+a=0\),\(cx^2+2ax+b=0\)
\(\Delta_1'=b^2-ac\) ; \(\Delta_2'=c^2-ab\) ; \(\Delta_3'=a^2-bc\)
\(\Rightarrow\Delta_1'+\Delta_2'+\Delta_3'=a^2+b^2+c^2-ab-bc-ca\)
\(=\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)
\(\Rightarrow\) Tồn tại ít nhất 1 trong 3 giá trị \(\Delta_1';\Delta_2';\Delta_3'\) không âm
\(\Rightarrow\) Ít nhất 1 trong 3 pt nói trên có nghiệm
Cho 2 số a,b bất kì. CMR ít nhất 1 trong 2 phương trình sau có nghiệm:
\(x^2+2ax+3ab=0;x^2+2bx-8ab=0\)0
Cho pt: \(x^2-ax+a+1=0\) .
Chứng minh với a+b >=2 thì có ít nhất một trong hai phương trình sau đây có nghiệm : \(x^2+2ax+b=0\)và \(x^2+2bx+a=0\).
Cho a,b,c thỏa mãn a+b+c= 3
CMR các phương trình sau ít nhất có 1 phương rình có 2 nghiệm phân biệt và 1 phương trình vô nghệm
x2 -2ax+b=0;
x2-2bx+c=0;
x2-2cx+a=0.
CMR nếu a, b, c là những số khác 0 thì trong 3 phương trình sau phải có ít nhất 1 phương trình có nghiệm:
\(ãx^2+2bx+c=0\left(1\right)\)
\(bx^2+2cx+a=0\left(2\right)\)
\(cx^2+2ax+b=0\left(3\right)\)
Cho a,b,c là các số thực sao cho a+b+c = 3
CMR trong 3 phương trình: \(x^2-2ax+b\); \(x^2-2bx+c;x^2-2cx+a\) có ít nhất 1 phương trình có 2 nghiệm riêng biệt và ít nhất 1 phương trình vô nghiệm
Chứng minh rằng ít nhất một trong các phương trình bậc hai sau đây có nghiệm:
ax2 + 2bx + c = 0 (1)
bx2 + 2cx + a = 0 (2)
cx2 + 2ax + b = 0 (3)