Cho:A=5/3n+2 với n > hoặc = 0. Tìm n để A thuộc Z
Cho A=3n-2/2n+4
a,Tìm n thuộc z để A là phân số
b,tìm a với n=0,n=(-1),n=2
c,tìm n thuộc Z để a là có giá trị nguyên
a: Để A là phân số thì \(2n+4\ne0\)
=>\(2n\ne-4\)
=>\(n\ne-2\)
b: Thay n=0 vào A, ta được:
\(A=\dfrac{3\cdot0-2}{2\cdot0+4}=\dfrac{-2}{4}=-\dfrac{1}{2}\)
Thay n=-1 vào A, ta được:
\(A=\dfrac{3\cdot\left(-1\right)-2}{2\cdot\left(-1\right)+4}=\dfrac{-5}{-2+4}=\dfrac{-5}{2}\)
Thay n=2 vào A, ta được:
\(A=\dfrac{3\cdot2-2}{2\cdot2+4}=\dfrac{4}{8}=\dfrac{1}{2}\)
c: Để A nguyên thì \(3n-2⋮2n+4\)
=>\(6n-4⋮2n+4\)
=>\(6n+12-16⋮2n+4\)
=>\(-16⋮2n+4\)
=>\(2n+4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
=>\(2n\in\left\{-3;-5;-2;-6;0;-8;4;-12;12;-20\right\}\)
=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;0;-4;2;-6;6;-10\right\}\)
CHO A = 3n-5/N+4. TÌM n thuộc z để A thuộc z
Để A thuộc Z thì 3n - 5 chia hết n + 4
<=> 3n + 12 - 17 chia hết n + 4
=> 3.(n + 4) - 17 chia hết n + 4
=> 17 chia hết n + 4
=> n + 4 thuộc Ư(17) = {-1;1;-17;17}
=> n = {-5;-3;-21;13}
Để A là số nguyên thì :
3n-5 \(⋮\) n + 4
\(\Rightarrow\) 3n+12 - 17 \(⋮\) n + 4
\(\Rightarrow\) 3.( n + 4 ) - 17 \(⋮\) n + 4
\(\Rightarrow\) 17 \(⋮\) n + 4
Suy ra : n+4 là Ư(17) = -17 ; -1 ; 1 ; 17
Vậy n= -21 ; -5 ; -3 ; 13
Vậy n
1: Cho A = \(\frac{n+3}{n+1}\) tìm n thuộc Z để A thuộc Z
2: Cho b = \(\frac{3n-5}{n-4}\)tìm n thuộc Z để B thuộc Z
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |
tìm n thuộc Z để
a) 8/n+1 thuộc Z
b) 3n-5/n+4 thuộc Z
Để các p/số là số nguyên thì
a. 8 chia hết cho n + 1
=> n + 1 thuộc Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
=> n thuộc {-9; -5; -3; -2; 0; 1; 3; 7}
b. 3n - 5 chia hết cho n + 4
=> 3n + 12 - 17 chia hết cho n + 4
=> 3.(n + 4) - 17 chia hết cho n + 4
mà 3.(n + 4) chia hết cho n + 4
=> 17 chia hết cho n + 4
=> n + 4 thuộc Ư(17) = {-17; -1; 1; 17}
=> n thuộc {-21; -5; -3; 13}.
a) 8/n + 1 thuộc Z
=> 8 chia hết cho n + 1
=> n + 1 thuộc Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
=> n thuộc {-9; -5; -3; -2; 0; 1; 3; 7}
b) 3n - 5 chia hết cho n + 4
=> 3n + 12 - 17 chia hết cho n + 4
=> 3.(n + 4) - 17 chia hết cho n + 4
Mà 3.(n + 4) chia hết cho n + 4
=> 17 chia hết cho n + 4
=> n + 4 thuộc Ư(17) = {-17; -1; 1; 17}
=> n thuộc {-21; -5; -3; 13}.
Tìm n thuộc Z biết
a, 18 chia hết cho n
b, n+2 thuộc Ư(16)
c,(n-4) chia hết cho (n-1)
d, 2n+8 thuộc 8(n+1)
e , (3n+4) chia hết cho (n+1)
f, (n^1+2)(n-6)<0
g, (n^2+1)(n+3)>0
h, (n+4)/n+5/> hoặc=0
a) 18 chia hết cho n
=> n thuộc Ư(8) ( 1,2,3,6,9,18)
A= 3n-1/n-2
1.Tìm n thuộc Z để A thuộc Z
2.Tìm n thuộc Z để A đạt giá trị nhỏ nhất
3. Tìm n thuộc Z để A đạt giá trị lớn nhất
a, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A thuộc Z <=> n - 2 thuộc Ư(5) = {1;-1;5;-5}
Ta có: n - 2 = 1 => n = 3
n - 2 = -1 => n = 1
n - 2 = 5 => n = 7
n - 2 = -5 => n = -3
Vậy n = {3;1;7;-3}
b, A = \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị nhỏ nhất <=> \(\frac{5}{n-2}\) đạt giá trị nhỏ nhất
=> n - 2 đạt giá trị lớn nhất (n - 2 \(\ne\)0 ; n - 2 < 0)
=> n - 2 = -1 => n = 1
Vậy để A có giá trị nhỏ nhất thì n = 1
c, \(\frac{3n-1}{n-2}=\frac{3n-6+5}{n-2}=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\)
Để A đạt giá trị lớn nhất <=> \(\frac{5}{n-2}\)đạt giá trị lớn nhất
=> n - 2 đạt giá trị nhỏ nhất (n - 2 \(\ne\)0 ; n - 2 > 0)
=> n - 2 = 1 => n = 3
Vậy để A đạt giá trị lớn nhất thì n = 3
n thuộc z để 6n^2+n-7 chia hết cho 3n-2. a,cho a+b+c=0 và ab+bc+ac=3 tìm giá trị biểu thức P= a^4+b^4+c^4-5
a/ Đặt A=6n2+n-7
=> 3A= 3(6n2-4n+5n-7)=3(6n2-4n)+15n-21 = 6n(3n-2)+15n-10-11=6n(3n-2)+5(3n-2)-11=(3n-2)(6n+5)-11
Nhận thấy: (3n-2)(6n+5) chia hết cho 3n-2 với mọi n
=> Để A nguyên (hay 3A nguyên) thì 11 phải chia hết cho 3n-2 => 3n-2=(-11,-1,1,11)
3n-2 | -11 | -1 | 1 | 11 |
n | -3 | 1/3(loại) | 1 | 13/3(loại) |
3A | -44 | Loại | 0 | Loại |
A | -44/3(loại) | Loại | 0 | Loại |
Đáp số: n=1
A=3n+1/2n-5
a tìm đ kiện của n để n để A là p/s (làm được rồi)
b, tìm n thuộc Z để A thuộc Z
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!
cho P = 3n+5/6n(n thuộc Z,n khác 0)
a)tìm n để P có giá trị lớn nhất
b)tìm GTLN đó
Ta tách như sau:
\(\frac{3n+5}{6n}=\frac{1}{2}+\frac{5}{6n}\)
+ Nếu n là số nguyên âm thì \(\frac{1}{2}+\frac{5}{6n}<\frac{1}{2}\forall n\) (Bởi vì \(\frac{5}{6n}<0\))
+ Nếu n là số nguyên dương thì \(\frac{1}{2}+\frac{5}{6n}\le\frac{1}{2}+\frac{5}{6}=\frac{4}{3}\forall n\)
Vậy maxP = \(\frac{4}{3}\) khi n = 1.
Chúc em học tốt ^^
\(P=\frac{3n+5}{6n}\)\(\in Z\left(n\ne0\right)\)
\(\Leftrightarrow\)\(3n+5\)chia hết \(6n\)
\(\Leftrightarrow\)\(3n+5\) chia hết cho \(2\left(3n\right)\)
\(\Leftrightarrow\)3n chia hết cho 2(3n) \(\Rightarrow5\) chia hết cho \(2\left(3n\right)\)\(\Leftrightarrow2\left(3n\right)\inƯ\left(5\right)=\left\{+-1,+-5\right\}\)
Bạn kẻ bảng ra rồi làm tiếp nhé, @ Không chắc