Cho tam giác ABC vuông tại B. Phân giác của góc A cắt BC tại D (D Thuộc BC)
Vẽ DE vuông góc với AC ( E thuộc AC), ED cắt Ab tại M. Chứng minh:
a, Tam giác BAD = Tam giá EAD
b, BK = Ec
c, tam giác AMC là tam giác gì? Vì sao?
d, ME - BM < AB
cho ABC có AB=6cm AC = 8cm vuông tại A a ) tính BC b) vẽ tia phân giác BD của góc B ( D thuộc AC ), từ D vẽ DE vuông góc với BC (E thuộc BC ) chứng minh tam giác ABC = tam giác EBD . c ) ED cắt AB tại F chúng minh tam giác ABC =tam giác EBF
a: BC=10cm
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó; ΔABD=ΔEBD
cho tam giác abc có ab=3 ac=4 bc=5
a, chứng minh tam giác abc vuông tại a
b, vẽ phân giác bd (d thuộc ac ) , từ d vẽ de vuông góc với bc (e thuộc bc ) chứng minh da=de
c,ed cắt ab tại f . chứng minh tam giác adf=edc rồi suy ra df>de
a) Xét ΔABC có \(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: DA=DE(hai cạnh tương ứng)
c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(Hai cạnh tương ứng)
mà DC>DE(ΔDEC vuông tại E)
nên DF>DE
cho tam giác ABC vuông tại B, tia phân giác của góc A cắt BC tại D. Từ D vẽ DE vuông góc với AC (E thuộc AC)
a. Chứng minh BD=DE
b. Hai đường thẳng AB và ED cắt nhau tại F. Chứng minh tam giác ADF = tam giác ADC
c. Chứng minh BA+ BC>DE+AC
Cho tam giác ABC cs AB=3cm,AC=5cm,BC=4cm.
a,Chứng tỏ tam giác ABC vuông tại B.
b,Vẽ phân giác AD (D thuộc BC).Từ D,vẽ DE vuông góc với AC(E thuộc AC).C/M DB=DE.
c,ED cắt AB tại F.C/M tam giác BDF= tam giácEDC rồi suy ra DF>DE.
d,C/M AB+BC>DE+AC
cho tam giác ABC vuông ại A và có AB = 3cm AC=4cma, so sánh góc của tam giác ABC b, vẽ phân giác BD (D thuộc AC) từ D vẽ DE vuông góc BC (E thuộc BC ) chứng minh DA=DE c, ED cắt AB tại F chứng minh ta giác ADF = tam giác EDC rồi suy ra DF > DE
a: BC=5cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC>DE
Cho tam giác ABC và vuông góc tại A,Tia phân giác góc B cắt AC tại D a) cho góc ABC = 40 độ.tính Góc ABD b) lấy E thuộc BC: BE=BA.CMR: góc BAD = góc BED và DE vuông góc với BC c) BA cắt ED tại F.CMR: tam giác ABC= tam giác EBF d) vẽ CK vuông góc với BD tại k.CMR: K,F,C thẳng hàng
a , BD là phân giác của \(\widehat{ABC}\)
\(\Rightarrow\) \(\widehat{ABC}=\frac{1}{2}.\widehat{ABC}=\frac{1}{2}.40^o=20^o\)
b , BD là phân giác của \(\widehat{ABC}\) \(\Rightarrow\) \(\widehat{ABD}=\widehat{EBD}\)
Xét ΔABD và ΔEBD có :
BD chung ; \(\widehat{ABD}\) \(=\) \(\widehat{EBD}\); AB = EB ( gt )
\(\Rightarrow\) ΔABD = ΔEBD ( c.g.c )
\(\Rightarrow\) \(\widehat{BAD}\) \(=\) \(BED\) ( đpcm )
\(\Rightarrow\) \(\widehat{BED}=90^o\) \(\Rightarrow\) \(DE\) ⊥ \(BC\) ( đpcm )
c , Xét 2 tam giác vuông : ΔABC và ΔEBF có :
\(\widehat{B}\) chung ; AB = BE ( gt )
\(\Rightarrow\) ΔABC = ΔEBF ( cgv - gn ) ( đpcm )
d , Xét ΔBCF có FE , CA là đường cao , FE ∩ CA tại D
\(\Rightarrow\) D là trực tâm ⇒ BD ⊥ CF
Mà BD ⊥ CK ( gt )
\(\Rightarrow\) C, K, F thẳng hàng ( đpcm )
Cho ABC vuông tại A, biết AB =3cm; AC =4cm. a) Tính BC.So sánh các cạnh của tam giác ABC b) Vẽ phân giác BD của góc ABC (D thuộc AC),từ D vẽ DE trung điểm BC(E thuộc BC) c) ED cắt AB tại F.Chứng minh tam giác ADF=tam giác EDC d) Chứng minh AB+AF
a: BC=căn 3^2+4^2=5cm
b,d: Đề bài yêu cầu gì?
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc A cắt BC tại D qua D kẻ đường thẳng vuông góc với BC cắt AC tại E trên AB lấy điểm F sao cho AF=AE chứng minh:
a) Góc B= góc DEC
b) Tam giác DBE là tam giác cân
c)Chứng minh DB=DE
Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại D.
Từ D vẽ DE vuông góc với BC ( E thuộc BC ).
a. CM. tam giác ABD = tam giác EBD
b. Kéo dài DE cắt đường thằng AB tại k. CM AK = EC.
c. CM BD vuông với KC
d. Vẽ EM vuông góc với AC ( M thuộc AC). AH vuông BC (H thuộc BC).Chứng minh: AE là đường trung trực của HM.