CHỨNG MINH: 1/1.2+1/1.2.3+1/1.2.3.4+....+1/1.2.3.4....1000 < 1
Chứng tỏ: 1/1.2+1/1.2.3+1/1.2.3.4+...+1/1.2.3...100<1
cho S=1/1.2+2/1.2.3+3/1.2.3.4+..+99/1.2.3.4.....99.100 chứng minh S <1
Mấy thánh vào giúp hộ em cái , em đang cần gấp , sai hay đúng cứ làm hết nhé
\(S=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)
\(S=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)
\(S=1-\frac{1}{100!}< 1\)
Vậy S<1
thánh đây rồi , đơn giản vậy em nghĩ mãi k ra , cảm ơn anh nhiều
Cho S = \(\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+\dfrac{3}{1.2.3.4}+....+\dfrac{99}{1.2.3.....99.100}\)
Chứng minh rằng : S<1
\(S=\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+........+\dfrac{99}{1.2.......100}\)
\(=\dfrac{1}{2!}+\dfrac{2}{3!}+....+\dfrac{99}{100!}\)
\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+.......+\dfrac{100-1}{100!}\)
\(=\dfrac{1}{1}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+....+\dfrac{1}{99!}-\dfrac{1}{100!}\)
\(=1-\dfrac{1}{100!}< 1\)
\(\Leftrightarrow S< 1\left(đpcm\right)\)
chứng tỏ \(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...100}< 1\)
\(CM: 1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4...n}< 2\)
A= 1+1.2+1.2.3+1.2.3.4+....+1.2.3.4........n là số chính phương không? Giải thích?
Ta có:
\(A=1+1.2+1.2.3+...+1.2.3.....n\)
\(=1!+2!+3!+4!+...+n!\)
Ta thấy bắt đầu từ 5! trở lên luôn có tận cùng là 0 vì nó chứa 2 thừa số 5 và 2.
Ta lại có:
\(A=1+2+6+24+\left(..0\right)+...+\left(...0\right)\)
\(=33+\left(...0\right)\)
\(=\left(...3\right)\)
Mà số chính phương có tận cùng là 0;1;5;6;9 nên A không là số chính phương.
Tính nhanh: 1+1.2+1.2.3+1.2.3.4+...+1.2.3...99+1.2.3....100
tính tổng dãy số thì dễ nhưng hãy viết rõ ràng hơn
\(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...2018}\)
Tính :
\(A=\left(1-\frac{1}{1.2}\right)\left(1-\frac{1}{1.2.3}\right)\left(1-\frac{1}{1.2.3.4}\right)...\left(1-\frac{1}{1.2.3.4.....1986}\right)\)