Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phùng Mai Khanh
Xem chi tiết
Đinh Quang Minh
Xem chi tiết
Nguyễn Tuấn Minh
10 tháng 4 2017 lúc 22:14

\(S=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(S=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(S=1-\frac{1}{100!}< 1\)

Vậy S<1

Đinh Quang Minh
10 tháng 4 2017 lúc 22:15

thánh đây rồi , đơn giản vậy em nghĩ mãi k ra , cảm ơn anh nhiều

Trà My Kute
Xem chi tiết
Nguyễn Thanh Hằng
1 tháng 3 2018 lúc 21:14

\(S=\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+........+\dfrac{99}{1.2.......100}\)

\(=\dfrac{1}{2!}+\dfrac{2}{3!}+....+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+.......+\dfrac{100-1}{100!}\)

\(=\dfrac{1}{1}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+....+\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}< 1\)

\(\Leftrightarrow S< 1\left(đpcm\right)\)

Trần Cao Vỹ Lượng
Xem chi tiết
Nguyễn Khánh Sơn
Xem chi tiết
Tran Anh Toan
Xem chi tiết
Le Thi Khanh Huyen
6 tháng 3 2015 lúc 17:31

Ta có:

\(A=1+1.2+1.2.3+...+1.2.3.....n\)

     \(=1!+2!+3!+4!+...+n!\)

Ta thấy bắt đầu từ 5! trở lên luôn có tận cùng là 0 vì nó chứa 2 thừa số 5 và 2.

Ta lại có:

\(A=1+2+6+24+\left(..0\right)+...+\left(...0\right)\)

     \(=33+\left(...0\right)\)

     \(=\left(...3\right)\)

Mà số chính phương có tận cùng là 0;1;5;6;9 nên A không là số chính phương.

Nguyen Minh Trang
Xem chi tiết
Khuất Châu Giang
5 tháng 3 2015 lúc 12:02

tính tổng dãy số thì dễ nhưng hãy viết rõ ràng hơn

Dung Cr7
Xem chi tiết
zZz Hoàng Vân zZz
Xem chi tiết