tìm tất cả các số dương x để x2 là bội của 3x - 2
Tìm tất cả các số tự nhiên để 2^n - 1 là bội của 5
CM: nếu x, y thuộc N và x + 2y là bội của 5 thì 3x - 4y cũng là bội của 5
Tìm tất cả các số nguyên dương x để x
2 + 8x là số chính phương.
Bài 1. Tìm tất cả các số nguyên dương x để x2 + 8x là số chính phương.
-Đặt \(x^2+8x=a^2\)
\(\Rightarrow x^2+8x+16=a^2+16\)
\(\Rightarrow\left(x+4\right)^2-a^2=16\)
\(\Rightarrow\left(x+a+4\right)\left(x-a+4\right)=16\)
-Vì \(x,a\) là các số nguyên dương \(\Rightarrow x+a+4>x-a+4\) và \(16=16.1=8.2=4.4\)
\(\Rightarrow x+a+4=16;x-a+4=1\Rightarrow x=\dfrac{9}{2};a=\dfrac{15}{2}\left(loại\right)\)
\(x+a+4=8;x-a+4=2\Rightarrow x=1;a=3\left(nhận\right)\)
\(x+a+4=4;x-a+4=4\Rightarrow x=a=0\left(nhận\right)\)
-Vậy \(x\in\left\{0;1\right\}\)
Hình bên là đồ thị của hàm số y = x 3 - 3 x Tìm tất cả các giá trị thực của tham số m để phương trình 64 | x | 3 = ( x 2 + 1 ) 2 ( 12 | x | + m ( x 2 + 1 ) ) có nghiệm.
A.
B. Với mọi m
C.
D.
Đáp án A
(*)
Đặt
Yêu cầu bài toán trở thành: Tìm m để phương trình có nghiệm
Từ đồ thị đã cho, ta suy ra đồ thị của hàm số
Từ đó ta có kể quả thỏa mãn yêu cầu bài toán
Tìm tất cả các giá trị của tham số m để hệ sau có nghiệm
x 2 - 3 x + 2 ≤ 0 m x 2 - 2 ( 2 m + 1 ) x + 5 m + 3 ≥ 0
A. m > -1/2
B. m = -1/2
C. m ≥ -1/2
D. không tồn tại
Chọn C
Ta có bất phương trình x2- 3x+ 2≤ 0 khi và chỉ khi 1≤ x≤ 2
Yêu cầu bài toán tương đương với bất phương trình:
mx2-2( 2m+1) x+ 5m+3≤0 (1)
có nghiệm x: 1≤ x≤ 2
+ Ta đi tìm m để bất phương trình (1) vô nghiệm trên S
Tức là bpt f( x) = mx2-2( 2m+1) x+ 5m+3< 0 (2)
đúng với mọi x ∈ S
+ Nếu m= 0 (2) trờ thành: -2x+ 3≤0 hay x> 3/2 nên (2) không đúng với mọi x ∈ S
+ Nếu m≠ 0 tam thức f(x) có hệ số a= m, biệt thức ∆’ = -m2+m+ 1
Bảng xét dấu:
Tìm tất cả các giá trị của tham số m để phương trình x - m 9 - x 2 = 0 có đúng 1 nghiệm dương?
A. m ∈ ( - 3 ; 2 ]
B. m ∈ ( - 3 ; 2 ] ∪ - 3 2
C. m ∈ 0 ; 3
D. m = ± 3 2
Tìm tất cả các giá trị của x để nhị thức - 3 x + 2 nhận giá trị dương.
A. x < 3 2
B. x < 2 3
C. x < - 3 2
D. x > 2 3
Tìm tất cả các giá trị dương của tham số m để phương trình x2+2(m+1)x-2m-3=0 có hai nghiệm trái dấu x1;x2 thỏa mãn \(\sqrt{2x_2-1}=x_1+22\)
Tìm tất cả các giá trị thực của tham số m để bất phương trình x 2 + 3 x + 3 x + 1 ≥ m nghiệm đúng với mọi x ∈ 0 ; 1
A. m ≥ 3
B. m ≤ 7 2
C. m ≥ 7 2
D. m ≤ 3
Đáp án D
Để bất phương trình m ≤ f x = x 2 + 3 x + 3 x + 1 ; ∀ x ∈ 0 ; 1 ⇔ m ≤ min 0 ; 1 f x
Xét hàm số f x = x 2 + 3 x + 3 x + 1 trên 0 ; 1 ⇒ min 0 ; 1 f x = 3 . Vậy m ≤ 3