Cho Tam Giác ABC Vuông Tại A , Biết AB = 5cm , AC = 12 cm
a) Tính BC
b) Trên Tia ĐỐi CỦa AB Lấy Điểm D Sao cho AB=AD ,Chứng Tỏ Tam Giác BCD Cân
c) GỌi K Và H lần Lượt Là Giao Điểm Của CD và CB . Chứng Minh : KH Song Song BD
* Quan Trọng Câu C *
cho tam giác ABC cân tại A. Biết AB = 5cm, AC = 12 cm
a. tính BC
b. trên tia đối của tia AB lấy điểm D sao cho AB = AD. Chứng tỏ tam giác ABC cân
c. Gọi K và H lần lượt là trung điểm của CD và CB. C/m: KH//BD
d. Gọi G là giao điểm BK và DH. Tính GA
tam giác ABC cân tại A thì AB=AC tại sao đề bài là AB<AC là sao ????????????????
Cho vuông tại A. Biết AB = 5cm, AC = 12 cm
a)Tính BC.
b)Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Chứng tỏ BCD cân.
c)Gọi K và H lần lượt là trung điểm của CD và CB. Chứng minh: KH//BD.
d)Gọi G là giao điểm của BK và DH. Tính GA.
cho tam giác ABC. Biết AB = 5cm, AC = 12 cm
a. tính BC
b. trên tia đối của tia AB lấy điểm D sao cho AB = AD. Chứng tỏ tam giác ABC cân
c. Gọi K và H lần lượt là trung điểm của CD và CB. C/m: KH//BD
d. Gọi G là giao điểm BK và DH. Tính GA
mình quên mất câu đầu là cho tam giác ABC vuông tại A
Cho tam giác ABC có AB AC . Trên tia đối của tia CA lấy điểm D sao cho CD AB . Gọi H , K lần lượt là trung điểm của AD, BC . Trung trực AD, BC cắt nhau tại I. Vẽ IE vuông góc AB tại E .a) Chứng minh Tam giác IABtâm giác IDC và AI là phân giác của BAC .b) Chứng minh BE HC và AI là đường trung trực của đoạn EH .c) Từ C kẻ đường thẳng song song với AB ,cắt đường thẳng EH tại F .Chứng minhTam giác BKE Tam giác CKF và E , K , F thẳng hàng.
vẽ hình hộ mik vs
a: Xét ΔIAB và ΔIDC có
IA=ID
AB=DC
IB=IC
=>ΔIAB=ΔIDC
=>góc IAB=góc IDC=góc IAD
=>AI là phân giác của góc BAC
b: Xét ΔAEI vuông tại E và ΔAHI vuông tại H có
AI chung
góc EAI=góc HAI
=>ΔAEI=ΔAHI
=>AE=AH; IE=IH
=>AI là trung trực của EH
Cho tam giác ABC vuông tại A có AB=6cm; BC=10cm.
a) Tính độ dài cạnh AC và so sánh các góc của tam giác ABC
b) Trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD. Chứng minh tam giác BCD cân
c) Gọi K là trung điểm của cạnh BC, đg thẳng DK cắt cạnh AC tại M. tính MC.
d) Đường trung trực d của đoạn thẳng AC cắt đường thẳng DC tại Q. Chứng minh 3 điểm B, M, Q thẳng hàng
a) Xét △ABC vuông tại A có :
AB2+AC2=BC2(định lý py-ta-go)
⇒ AC2=BC2-AB2
⇒ AC2=102-62
⇒ AC2=100-36
⇒ AC2=64
⇒ AC=8
Vậy AC=8cm
b)
Xét △ABC và △ADC có :
AC chung
AB=AD(gt)
∠BAC=∠DAC(=90)
⇒△ABC=△ADC(c-g-c)
⇒BC=DC(2 cạnh tương ứng)
Xét △BCD có BC=DC(cmt)
⇒△BCD cân tại C (định lý tam giác cân)
c)
Xét △BCD cân tại C có
K là trung điểm của BC (gt)
A là trung điểm của BD (gt)
⇒DK , AC là đường trung tuyến của △BCD
mà DK cắt AC tại M nên M là trọng tâm của △BCD
⇒CM=2/3AC
⇒CM=2/3.8
⇒CM=16/3cm
d)
Xét △AMQ và △CMQ có
MQ chung
MA=MC(gt)
∠AMQ=∠CMQ(=90)
⇒△AMQ=△CMQ(C-G-C)
⇒∠MAQ=∠C2(2 góc tương ứng )
QA=QC( 2 cạnh tương ứng)
Vì △ABC=△ADC(theo b)
⇒∠C1=∠C2(2 góc tương ứng)
⇒∠C1=∠MAQ
mà 2 góc này có vị trí SLT
⇒AQ//BC
⇒∠QAD=∠CBA( đồng vị )
mà∠CBA=∠CDA(△BDC cân tại C)
⇒∠QAD=∠QDA
⇒△ADQ cân tại Q
⇒QA=QD
mà QA=QC(cmt)
⇒DQ=CQ
⇒BQ là đường trung tuyến của△BCD
⇒B,M,D thẳng hàng
cho tam giác ABC vuông tại B , AB=3cm , AC=4,5 cm . Vẽ phân giác AD(D thuộc BC). từ D vẽ DE vông góc với AC(E thuộc AC). Gọi K là giao điểm của ED và AB
Chứng Minh
a)BD=ED
b) tam giác AKC cân
c) Trên tia đối của tia KE lấy điểm F sao cho KF =BC . cm EB đi qua trung điểm của AF
---------------------------------mọi người giúp em với----------------------------------------
không cần vẽ hình đâu ah
a: Xét ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>DB=DE
b: Xét ΔAEK vuông tại E và ΔABC vuông tại B có
AE=AB
góc EAK chung
=>ΔAEK=ΔABC
=>AK=AC
=>ΔAKC cân tại A
Câu 12: Cho tam giác ABC vuông tại C , có AB = 10 cm, AC cm = 6 . Trên tia đối của tia CB lấy D sao cho CD=CB .
a) Tính BC , so sánh góc A và góc B của tam giác ABC
b) Chứng minh tam giác ABD cân tại A.
c) Gọi M là trung điểm của AD , BM cắt AC tại G. Chứng minh GB +2GC>AB
d) Qua C kẻ CN DA / / sao cho N thuộc AB . Chứng minh D, G ,N thẳng hàng .
a: BC=8cm
BC>AC
=>góc A>góc B
b: XétΔABD có
AC vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
c: GB+2GC=GB+GA>AB
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Bài 1
Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE
a) Chứng minh rằng HK song song
với DE
b) Tính HK, biết chu vi tam giác ABC bằng 10 cm
Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB
Bài 3 Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AH, E là giao điểm của BI và AC. Tính các độ dài AE và EC, biết AH = 12 cm, BC = 18 cm
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB