Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Văn Thắng Hoàng

Cho tam giác ABC vuông tại A có AB=6cm; BC=10cm.

a) Tính độ dài cạnh AC và so sánh các góc của tam giác ABC

b) Trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD. Chứng minh tam giác BCD cân

c) Gọi K là trung điểm của cạnh BC, đg thẳng DK cắt cạnh AC tại M. tính MC.

d) Đường trung trực d của đoạn thẳng AC cắt đường thẳng DC tại Q. Chứng minh 3 điểm B, M, Q thẳng hàng

 

Cấn Nhung
30 tháng 5 2021 lúc 12:42

a) Xét △ABC vuông tại A có :

          AB2+AC2=BC2(định lý py-ta-go)

⇒       AC2=BC2-AB2

⇒       AC2=102-62

⇒       AC2=100-36

⇒       AC2=64

⇒       AC=8

            Vậy AC=8cm

b)

Xét △ABC và △ADC có :

    AC chung

    AB=AD(gt)

    ∠BAC=∠DAC(=90)

⇒△ABC=△ADC(c-g-c)

⇒BC=DC(2 cạnh tương ứng)

Xét △BCD có BC=DC(cmt)

⇒△BCD cân tại C (định lý tam giác cân)

c)

Xét △BCD cân tại C có

K là trung điểm của BC (gt)

A là trung điểm của BD (gt)

⇒DK , AC là đường trung tuyến của △BCD

 mà DK cắt AC tại M nên M là trọng tâm của △BCD

⇒CM=2/3AC

⇒CM=2/3.8

⇒CM=16/3cm

d)

Xét △AMQ và △CMQ có

     MQ chung 

     MA=MC(gt)

     ∠AMQ=∠CMQ(=90)

⇒△AMQ=△CMQ(C-G-C)

⇒∠MAQ=∠C2(2 góc tương ứng )

     QA=QC( 2 cạnh tương ứng)

Vì △ABC=△ADC(theo b)

⇒∠C1=∠C2(2 góc tương ứng)

∠C1=∠MAQ

mà 2 góc này có vị trí SLT

⇒AQ//BC

⇒∠QAD=∠CBA( đồng vị )

mà∠CBA=∠CDA(△BDC cân tại C)

⇒∠QAD=∠QDA

⇒△ADQ cân tại Q

⇒QA=QD

mà QA=QC(cmt)

⇒DQ=CQ

⇒BQ là đường trung tuyến của△BCD 

⇒B,M,D thẳng hàng

 


Các câu hỏi tương tự
Lee Vincent
Xem chi tiết
Mạnh Châu
Xem chi tiết
Trần Thị Thùy Linh
Xem chi tiết
Vũ Phạm Khánh Ngọc
Xem chi tiết
Nguyễn Văn Tùng
Xem chi tiết
Nguyễn Anh Thư
Xem chi tiết
Trần Thành Nhân
Xem chi tiết
Dâu Tây Channel
Xem chi tiết
Linh Chi Ngô
Xem chi tiết