Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tung Nguyễn
Xem chi tiết
Nguyễn Thị Anh
7 tháng 8 2016 lúc 22:38

diều kiện x >= 0

P=\(\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\frac{4\sqrt{x}}{3}\)

\(\frac{x+2-x+\sqrt{x}-1}{x\sqrt{x}+1}.\frac{4\sqrt{x}}{3}\)

=\(\frac{\sqrt{x}+1}{x\sqrt{x}+1}.\frac{4\sqrt{x}}{3}\)=\(\frac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)

P=8/9

<=> \(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)

<=> \(3\sqrt{x}=2x-2\sqrt{x}+1\)

<=> \(2x-5\sqrt{x}+2=0\)

<=> \(\left[\begin{array}{nghiempt}x=4\\x=\frac{1}{4}\end{array}\right.\)

vậy x=4 hoặc x=1/4 thì p=8/9

 

 

Trần Việt Linh
7 tháng 8 2016 lúc 22:45

a) \(P=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\left(ĐK:x\ge0;x\ne-1\right)\)

\(=\left[\frac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right]\cdot\frac{4\sqrt{x}}{3}\)

\(=\frac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)

\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)

\(=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b) Để P=8/9

\(\Leftrightarrow\)\(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)

\(\Leftrightarrow24\left(x-\sqrt{x}+1\right)=36\sqrt{x}\)

\(\Leftrightarrow24x-24\sqrt{x}+24-36\sqrt{x}=0\)

\(\Leftrightarrow24x-60\sqrt{x}+24=0\)

\(\Leftrightarrow12\left(2x-5\sqrt{x}+2\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{x}\right)-\left(4\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)-2\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2\sqrt{x}-1=0\\\sqrt{x}-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=\frac{1}{2}\\\sqrt{x}=2\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{4}\left(tm\right)\\x=4\left(tm\right)\end{array}\right.\)

Tung Nguyễn
Xem chi tiết
Nguyễn Thị Anh
2 tháng 8 2016 lúc 21:44

Hỏi đáp Toán

Trần Anh Tuấn
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
🤣🤣🤣 Ŧùɔ
14 tháng 5 2021 lúc 10:27

Em gửi ảnh ạ !

Khách vãng lai đã xóa
🤣🤣🤣 Ŧùɔ
14 tháng 5 2021 lúc 10:27

Em gửi ảnh trên ạ !!!!!

Khách vãng lai đã xóa
Nguyễn Huy Tú
14 tháng 5 2021 lúc 11:55

a, Ta có \(x=49\Rightarrow\sqrt{x}=7\)

Thay vào biểu thức A ta được : 

\(A=\frac{7.4}{7-1}=\frac{28}{6}=\frac{14}{3}\)

b, Với \(x\ge0;x\ne1\)

\(B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}=\frac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)( đpcm )

Khách vãng lai đã xóa
Hoàng Kiệt
Xem chi tiết
LÊ nhi
Xem chi tiết
Park Chanyeol
Xem chi tiết
Hoàng Lê Bảo Ngọc
14 tháng 7 2016 lúc 0:41

a) ĐKXĐ : \(0\le x\ne4\) 

b) \(A=\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\sqrt{x}}{2-\sqrt{x}}+\frac{4\sqrt{x}-1}{x-4}\right):\frac{1}{x-4}\)  

\(=\left[\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right].\left(x-4\right)\)

\(=\frac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)

\(=\frac{-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)=-1\)

Nguyen Nhu Nam
13 tháng 7 2016 lúc 23:46

\(A=\left[\frac{\left(\sqrt{x}-2\right)\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4\sqrt{x}-1}{x-4}\right]:\frac{1}{x-4}\)

\(=\frac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{x-4}.\left(x-4\right)\)=\(=\frac{-1}{x-4}.\left(x-4\right)=-1\)

Vậy giá trị của A thỏa mãn mọi x và rút gọn lại còn -1

nguyen thao
Xem chi tiết
Nguyễn Bá Thông
Xem chi tiết