chung to \(\frac{2n+5}{n+3}\) la phan so toi gian
Chung to rang 3n - 5 phan 3 - 2n la phan so toi gian
chung to rang vs moi so tu nhien n , phan so n^3+2n/n^4+3n^2+1 la toi gian
chung minh phan so 2n+3/4n+5 la toi gian
Gọi ƯC(2n+3;4n+5) = d
=> 2n+3 chia hết cho d
=> 4n+5 chia hết cho d
=> 2.(2n+3) chia hết cho d
=> 4n + 6 chia hết cho d
=> (4n + 6) - (4n + 5) chia hết cho d
=> 1 chia hết cho d
=> d = + 1
Vậy phân số 2n+3/4n+5 là phân số tối giản
để ƯCLN(2n+3;4n+5)=d
=> 2n+3 chia hết cho d
=> 2(2n+3)chia hết cho d
=> 4n+6chia hết cho d
=>4n+5 chia hết cho d
Vậy (4n+6)-(4n+5) chia hết cho d hay 1 chia hết cho d
Vậy 2n+3/4n+5 là tối giản
Chung minh rang moi phan so dang n+1/2n+3 ( n thuoc N ) deu la phan so toi gian.
để p/số trên tối giản thì ƯCLN là 1,gọi số đó là d
n+1:d,2n+2:d
2n+3-2n-2:d
1:d
d=1
vậy p/số đó luôn tối giản
gọi ƯC(n+1;2n+3)=d
ta có n+1 chia hết cho d nên 2(n+1) chia hết cho d nên 2n+2 cũng chia hết cho d , mặt khác 2n+3 chia hết cho d
nên 2n+3-(2n+2) chia hết cho d nên 1 chia hết cho d vậy ƯC của n+1 và 2n+3 là 1 hoặc -1
do đó mọi fân số dạng n+1/2n+3 đều là phân số tối giản
chung to rang phan so 2n+1/3n+2 la phan so toi gian
Gọi \(d\in\left(2n+1;3n+2\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow1⋮}d\Rightarrow d=1}\)
\(\Rightarrowđpcm\)
Chung to rang phan so:
A= \(\dfrac{n+3}{2n+5}\) la phan so toi gian \(\forall\) x
GIUP MINH GAP NHOA!!!! MINH HUA SE BAO DAP
Gọi \(d=ƯCLN\left(n+3;2n+5\right)\left(d\in N\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+3⋮d\\2n+5⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n+6⋮d\\2n+5⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(n+3;2n+5\right)=1\)
\(\Leftrightarrow\)Phân số \(\dfrac{n+3}{2n+5}\) tối giản với mọi n
Báo đáp j ế!
Gọi \(d\) là \(UCLN\left(n+3;2n+5\right)\)
\(\Rightarrow n+3⋮d\Rightarrow2\left(n+3\right)⋮d\Rightarrow2n+6⋮d\)
\(\Rightarrow2n+5⋮d\)
\(\Leftrightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(2n+6-2n-5⋮d\)
\(1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\dfrac{n+3}{2n+5}\) tối giản với mọi \(n\in N\)
chung to rang moi phan so co dang 2*n+3/3*n+5 la phan so toi gian
Gọi d là ƯC ( 2n + 3 ; 3n + 5 )
=> 2n + 3 ⋮ d => 3.( 2n + 3 ) ⋮ d => 6n + 9 ⋮ d
=> 3n + 5 ⋮ d => 2.( 3n + 5 ) ⋮ d => 6n + 10 ⋮ d
=> [ ( 6n + 10 ) - ( 6n + 9 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( 2n + 3 ; 3n + 5 ) = 1 nên \(\frac{2n+3}{3n+5}\) là p/s tối giản
Gọi d là ƯC 9 2n + 3 ; 3n + 5 )
=> 2n + 3 chia hết cho d => 3 ( 2n + 3 ) chia hết cho d => 6n + 9 chia hết cho d
=> 3n + 5 chia hết cho d => 2 ( 3n + 5 ) chia hết cho d => 6n + 10 chia hết cho d
=> [ ( 6n + 10 ) - ( 6n + 9 ) ] chia hết cho d
=> 1 chia hết cho d = > d = 1
Vậy ,..........................
chung to voi moi n thuoc * thi cac phan so sau day la phan so toi gian
B)\(\frac{2n-1}{2n-2}\)
c) \(\frac{2n+3}{6n+8}\)\
d) \(\frac{4n+1}{14n+3}\)
Gọi d là ƯCLN ( 2n - 1 ; 2n - 2 )
=> 2n - 1 ⋮ d
=> 2n - 2 ⋮ d
=> [ ( 2n - 2 ) - ( 2n - 1 ) ] ⋮ d
=> 2 - 1 ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN ( 2n - 1 ; 2n - 2 ) = 1 nên 2n-1/2n-2 là phân số tối giản
Ccs câu sau làm tương tự
chung to phan so toi gian voi n thuoc n a , n+1/2n+3 b, 2n +3 /4n +8
Gọi d là ƯCLN của n + 1 và 2n + 3
Khi đó : n + 1 chia hết cho d , 2n + 3 chia hết cho d
<=> 2(n + 1) chia hết cho d , 2n + 3 chia hết cho d
<=> 2n + 2 chia hết cho d , 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 1 chia hết cho d
Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản
a,Gọi d là ƯCLN của n+1 và 2n+3(d thuộc Z/ d khác 0)
=> n+1 chia hết cho d; 2n+ 3 chia hết cho d
=>(n+1)-(2n+3) chia hết cho d
=>1chia hết cho d=> d thuộc Ư của 1
=.> \(\frac{n+1}{2n+3}\)là ps tối giản
b, Gọi d là ƯCLN (2n+3;4n+8)(d thuộc Z/ d khác 0)
=>2n+3 chia hết cho d;4n+8 chia hết cho d
=>(2n+3)-(4n+8) chia hết cho d
=>(2n+3)-(2n+4) chia hết cho d
=>-1 chia hết cho d
=>\(\frac{2n+3}{4n+8}\)là ps tối giản