cho p và q là 2 số nguyên tố lẻ liên tiếp. Cm p+q là tích của ít nhất 3 số nguyên lớn hơn 1( 3 số không nhất thiết khác nhau)
Với mỗi số nguyên dương n, với n > 1.Giả sử Q là tích của tất cả các số nguyên dương nhỏ hơn n và nguyên tố cùng nhau với n. Chứng minh rằng Q đồng dư 1 mod n nếu n lẻ và có ít nhất 2 ước nguyên tố.
giải thích rõ hộ em với ạ em vnx chưa hiểu ạ;-;
Với mỗi số nguyên dương n, với n > 1.Giả sử Q là tích của tất cả các số nguyên dương nhỏ hơn n và nguyên tố cùng nhau với n. Chứng minh rằng Q đồng dư 1 mod n nếu n lẻ và có ít nhất 2 ước nguyên tố.
cho a và b là 2 số nguyên tố lẻ liên tiếp. Cmr tích ab có thể phân tích thành 3 số nguyên lớn hơn 1
1.Cho p là số nguyên tố lớn hơn 3 và 8k+1 là số nguyên tố.CM 8p-1 là hợp số
2.Cho q là số nguyên tố lớn hơn 3 và q+2 là số nguyên tố .CM q+1 là bội của 6
1.
Vì p là số nguyên tố lớn hơn3
=>p có 2 dạng là 3k+1 và 3k+2
*Xét p=3k+1=>8p+1=8.(3k+1)+1=8.3k+8+1=3.8k+9=3.(8k+3) là hợp số
=>Vô lí
*Xét p=3k+2=>8p+1=8.(3k+2)+1=8.3k+16+1=3.8k+17=3.(8k+5)+2 là số nguyên tố
Khi đó: 8p-1=8.(3k+2)-1=8.3k+16-1=3.8k+15=3.(8k+5) là hợp số
Vậy 8p-1 là hợp số
2.
Vì p là số nguyên tố lớn hơn 3
=>p là số lẻ
=>p+1 là số chẵn
=>p+1 chia hết cho 2(1)
Vì p là số nguyên tố lớn hơn 3
=>p có 2 dạng là 3k+1 và 3k+2
*Xét p=3k+1=>p+2=3k+1+2=3k+3=3.(k+1) là hợp số
=>Vô lí
*Xét p=3k+2=>p+2=3k+2+2=3k+4=3.(k+1)+1 là số nguyên tố
Khi đó: p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3
=>p+1 chia hết cho 3(2)
Từ (1) và (2) ta thấy:
p+1 chia hết cho 2 và 3
mà (2,3)=1
=>p+1 chia hết cho 2.3
=>p+1 chia hết cho 6
Vậy p+1 là bội của 6
1. Chứng minh rằng: 2001. 2002. 2003. 2004 + 1 là hợp số.
2. Tướng Trần Hưng Đạo đánh tan 50 vạn quân Nguyên năm abcd , biết:
a là số tự nhiên nhỏ nhất khác 0 b là số nguyên tố nhỏ nhất
c là hợp số chẵn lớn nhất có một chữ số
d là số tự nhiên liền sau số nguyên tố lẻ nhỏ nhất
Vậy abcd là năm nào?
3. Cho p là một số nguyên tố lớn hơn 3 và 2p + 1 cũng là một số nguyên tố, thì 4p + 1 là số nguyên tố hay hợp số? Vì sao?
4. Tìm ba số tự nhiên liên tiếp có tích bằng 19 656.
5. Tìm số tự nhiên n biết rằng: 1 + 2 + 3 + ... + n = 1275.
BẠN NÀO LÀM ĐÚNG THÌ MÌNH SẼ TICK NHA !!!
gbdbxccxbbnnb
Bài 6 : Chứng minh rằng các số sau đây nguyên tố cùng nhau:
a, 2 số lẻ liên tiếp
b,2n+5 và 3n+7
Bài 7 :Cho ƯCLN (a;b) = 1. CMR
a, ước chung lớn nhất của a và a - b bằng 1
b, a.b và a+b có ước chung lớn nhất bằng 1.
Bài 8 :Cho a,b là 2 số tự nhiên khác 0 không nguyên tố cùng nhau
a=4n+3;b=5n+1 (n thuộc N)
Tìm ước chung lớn nhất của a và b
gọi 2 số lẻ liên tiếp là 2K + 1 và 2K + 3
gọi d là ƯCLN( 2K+1;2K+3)
ta có ƯCLN(2k+1;2k+3)=d \(\Rightarrow\)2k+1 chia hết cho d 2k + 3 chia hết cho d
suy ra 2k+3 - 2k - 1 = 2 chia hết cho d
mà số lẻ ko chia hết cho 2
suy ra d = 1
vậy 2 số lẻ liên thiếp là 2 số nguyên tố cùng nhau
Câu 1
Tìm 3 số nguyên tố liên tiếp p,q,r sao cho p2+q2+r2 cũng là số nguyên tố
Câu 2
Tìm bộ 3 số nguyên tố a,b,c sao cho abc<ab+bc+ca
Câu 3
Cho p là số nguyên tố lớn hơn 2. Chứng minh rằng có vô số số tự nhiên n thỏa mãn n.2n-1 chia hết cho p
Câu 4
Cho p là số nguyên tố, chứng minh rằng số 2p-1 chỉ có ước nguyên tố có dạng 2pk+1
Câu 5
Giả sử p là số nguyên tố lẻ và m=\(\frac{9^p-1}{8}\) . Chứng minh rằng m là hợp số lẻ không chia hết cho 3 và 3m-1= 1 ( mod m)
1. Ta biết rằng có 25 số nguyên tố nhỏ hơn 100. Tổng của 25 số nguyên tố đó là chẵn hay lẻ?
2. Tổng của ba số nguyên tố bằng 1012. Tìm số nhỏ nhất trong ba số nguyên tố đó.
3. Tìm bốn số nguyên tố liên tiếp, sao cho tổng của chúng là số nguyên tố.
1. Ta có: trong 25 số nguyên tố có 1 số nguyên tố chẵn còn lại là 24 số nguyên tố lẻ. Tổng của 24 số lẻ là một số chẵn nên tổng của 25 số nguyên tố nhỏ hơn 100 là số chẵn.
Ta có: Gỉa sử 3 số nguyên tố đó đều là lẻ thì lẻ+lẻ+lẻ=lẻ
⇒Có một số nguyên tố chẵn
Chỉ 2 là số nguyên tố chẵn duy nhất
⇒Số nhỏ nhất trong ba số nguyên tố là 2
Cho a,b,c lớn hơn 0 và là 3 số p = b^c+a , q = a^b+c , r = c^a+b là số nguyên tố
CMR: ít nhất có 2 số bằng nhau