Tính:
\(\frac{1}{n}-\frac{1}{n-k}\left(n,k\in N,\right)n\ne0\)
\(\left(\frac{2}{2.3}-1\right)\left(\frac{2}{3.4}-1\right)\left(\frac{2}{4.5}\right)........\left(\frac{2}{n\left(n+1\right)}-1\right)\left(n\in N\ne0,n\ge2\right)\)
\(\frac{-1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-....-\frac{1}{\left(n-1\right).n}\left(n\in N\ne0,n\ne1\right)\)
Tính các tổng :
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\) ( Hướng dẫn : \(\frac{1}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\))
b) \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
( Hướng dẫn : \(\frac{1}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}\left(\frac{1}{k}+\frac{1}{k+2}\right)-\frac{1}{k+1}\))
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(A=1-\frac{1}{n+1}\)
a) Ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(A=1-\frac{1}{n+1}\)
\(A=\frac{n+1}{n+1}-\frac{1}{n+1}\)
\(A=\frac{n}{n+1}\)
Học tốt nha^^
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\)
\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow2B=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow B=\frac{1}{4}-\frac{1}{2\left(n+1\right)\left(n+2\right)}\)
Tính tổng của B :B=\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
HD:\(\frac{1}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}\left(\frac{1}{k}+\frac{1}{k+2}\right)-\frac{1}{k+1}\)
B=1/2.1.2-1/2.2.3+1/2.2.3-1/2.3.4+...+1/2n(n+1)-1/2(n+1)(n+2)
B=1/2[(1/1.2+1/2.3+...+1/n(n+1))-(1/2.3+1/3.4+...+1/(n+1)(n+2))]
Tới đây bạn tự làm tiếp nha, tương tự như bài 1/1.2+1/2.3+..+1/n(n+1) á bạn.Cái này bạn ghi ra bạn sẽ hiểu, mình viết hơi bị lủng củng.
Cho \(\hept{\begin{cases}a_1>a_2>...>a_n>0\\1\le k\in Z\end{cases}}\)
CMR : \(a_1+\frac{1}{a_n\left(a_1-a_2\right)^k\left(a_2-a_3\right)^k...\left(a_{n-1}-a_n\right)^k}\ge\frac{\left(n-1\right)k+2}{\sqrt[\left(n-1\right)k+2]{k^{\left(n-1\right)k}}}\)
Gửi : Nguyễn Huy Thắng ( Quy nạp )
CMR : 1.2+2.3+3.4+...+n.(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Giải :
Đặt biểu thức trên là (*)
Với n = 1 Thì (*) \(\Leftrightarrow1.2=\frac{1.2.3}{3}\) ( Đúng )
Giả sử với (*) đúng với n=K
=> (*) <=> 1.2+2.3+...+k.(k+1)=\(.\frac{k.\left(k+1\right)\left(k+2\right)}{3}\)
Ta phải chứng minh (*) cùng đúng với 2=k+1
thật vậy với n=k+1
=>(*) <=> 1.2+2.3+...+k.(k+1)+(k+1).(k+2)=\(\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
=> \(\frac{k.\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right).\left(k+2\right)=\frac{\left(k+1\right).\left(k+2\right)\left(k+3\right)}{3}\)
=> \(\frac{k}{3}+1=\frac{k+3}{3}\Leftrightarrow\frac{k}{3}+1=\frac{k}{3}+1\)( Đúng )
=> (*) đúng với n = k+1
Vậy (*) đúng với mọi n thuộc N*
Sai hay đúng vậy :)
Tìm phân số \(\frac{m}{n}\left(\frac{m}{n}\ne0\right)\) và số tự nhiên k,biết \(\frac{m}{n}=\frac{m+k}{nk}\)
(*)Giải theo cách của lớp 7
0
m, n
0;
=
k
0
mnk = n(m+k)
mk = m+k
m(k-1)=k
m 0
k
2
TH1: k = 2 m = 2 (chọn)
TH2: k 3
m =
không nguyên (loại)
m = 2
k = 2
n nguyên dương tùy ý 0
Sửa lại này, lúc nãy mình gõ trong Word rồi copy ra nên mất 1 số ký tự.
m/n khác 0 -> m; n khác 0
m/n = (m+k)/nk -> k khác 0
->mnk=n(m+k)
mk = m+k
m(k-1)=k
m khác 0 -> k lớn hơn hoặc bằng 2
Trường hợp 1: k=2 -> m=2 (chọn)
Trường hợp 2: k lớn hơn 2 -> m=k/(k-1) không nguyên (loại)
-> m=2; k=2; n nguyên dương tùy ý khác 0
Chứng minh rằng : \(\frac{k}{n\left(n+k\right)}=\frac{1}{n}-\frac{1}{n+k}\) ( với n,k E N, n #0 )
Ta có :
1/n - 1/n + k
= n + k - n / n . ( n + k )
= k / n . ( n + k )
Ta có \(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\cdot\left(n+k\right)}-\frac{n}{n\cdot\left(n+k\right)}=\frac{k}{n\cdot\left(n+k\right)}\) (dpcm)
Chứng minh: \(\frac{n+1}{n+2}\left(\frac{1}{C_{n+1}^k}+\frac{1}{C_{n+1}^{k+1}}\right)=\frac{1}{C_n^k}\)