Tính A\(\frac{1x2x3+2x4x6+4x8x12+8x16x24}{2x3x4+4x6x8+8x12x16+8x24x32}\)
tim A biet A = 1x2x3+2x4x6+4x8x12+8x16x24/2x3x4+4x6x8+8x12x16+16x24x32
1x2x3+2x4x6+3x6x9+4x8x12/2x3x4+4x6x8+6x9x12+8x12x16
1x2x3 + 2x4x6 + 3x6x9/2x3x4 + 4x6x8 + 6x9x12
Giúp mình giải câu hỏi này với:
1x2x3+2x3x4+3x4x5+...+100x101x102/2x4x6+4x6x8+6x8x10+...+200x202x204
Tính 1x2x3+2x4x6+4x8x12+7x14x21/1x3x5+2x6x10+4x12x20+7x21x35
\(\dfrac{1\times2\times3+2\times4\times6+4\times8\times12+7\times14\times21}{1\times3\times5+2\times6\times10+4\times12\times20+7\times21\times35}\\ =\dfrac{1\times2\times3}{1\times3\times5}+\dfrac{2\times4\times6}{2\times6\times10}+\dfrac{4\times8\times12}{4\times12\times20}+\dfrac{7\times14\times21}{7\times21\times35}\\ =\dfrac{2}{5}+\dfrac{4}{10}+\dfrac{8}{20}+\dfrac{14}{35}\\ =\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}\\ =\dfrac{2}{5}\times4\\ =\dfrac{8}{5}\)
Giúp mình với: 2x3x4+6x9x12/4x6x8+8x12x16
2×3×4+6×9×12/4×6×8+8×12×16
= 2×3×4×(1+3×3×3)/4×6×8×(1+2×2×2)
= 2×3×4×28/4×6×8×9
= 6×4×28/4×6×8×9
= 28/8×9 = 7/18
Tính nhanh:
1x2x3 + 2x4x6 + 4x8x12 + 5x10x15 / 1x3x4 + 2x6x8 + 4x12x16 + 5x15x20
GIẢI CHI TIẾT RA GIÚP Ạ CHỨ 3H30 MÌNH ĐI HỌC RỒI,CẢM ƠN !!!
\(=\dfrac{1\cdot2\cdot3+8\cdot1\cdot2\cdot3+64\cdot1\cdot2\cdot3+125\cdot1\cdot2\cdot3}{1\cdot3\cdot4+8\cdot1\cdot3\cdot4+64\cdot1\cdot3\cdot4+125\cdot1\cdot3\cdot4}\)
\(=\dfrac{1\cdot2\cdot3}{1\cdot3\cdot4}=\dfrac{2}{4}=\dfrac{1}{2}\)
So sánh G=1x2x3+2x4x6+4x8x12 và H=1x3x5+2x6x10+4x12x20 ( lưu ý : ko tính kết quả mà so sánh bằng cách tách các thừa số ra )
Ta có:
G = 1.2.3 + 1.2.2.2.3.2 + 4.1.4.2.4.3 = 1.2.3.( 1 + 2.2.2 + 4.4.4 )
H = 1.3.5 +1.2.2.2.3.2 + 4.1.4.2.4.3 = 1.3.5. ( 1+ 2.2.2 +4.4.4 )
Vì 1.2.3 < 1.3.5 nên G < H
Tính tổng:
A=\(\frac{1}{2x4x6}\)+\(\frac{1}{4x6x8}\)+\(\frac{1}{6x8x10}\)+...+\(\frac{1}{22x24x26}\)
\(A=\frac{1}{3}.\left(\frac{3}{2.4.6}+\frac{3}{4.6.8}+...+\frac{3}{22.24.26}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2.4}-\frac{1}{4.6}+\frac{1}{4.6}-\frac{1}{6.8}+...+\frac{1}{22.24}-\frac{1}{24.26}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2.4}-\frac{1}{24.26}\right)\)
\(A=\frac{1}{3}.\frac{77}{624}\)
\(A=\frac{77}{1872}\)