Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tùng Dương
Xem chi tiết
ntkhai0708
14 tháng 4 2021 lúc 20:08

$M$ là điểm nằm trong $ΔABC$

nên ta có các tam giác $ΔMAB;MAC;MBC$

Xét $ΔMAB$ có: $MA+MB>AB$ (quan hệ giữa 3 cạnh trong 1 tam giác;bất đẳng thức tam giác)

tương tự $ΔMAC$ có: $MA+MC>AC$

$ΔMBC$ có: $MB+MC>BC$

nên $MA+MB+MA+MC+MB+MC>AB+BC+CA$

suy ra $2.(MA+MB+MC)>AB+BC+CA$
hay $MA+MB+MC>\dfrac{AB+BC+CA}{2}$

cirl Măng
Xem chi tiết
kodo sinichi
6 tháng 4 2022 lúc 16:22

ko nhìn thấy 

kodo sinichi
6 tháng 4 2022 lúc 16:23

refer

 

 

Lucy Nguyễnlêhehe
19 tháng 6 lúc 21:44

bị bôi đen rồi bn ạ

 

binchu2121
Xem chi tiết
zZz Cool Kid_new zZz
5 tháng 4 2019 lúc 16:21

A B C M D

a)

Áp dụng bất đẳng thức tam giác,ta có:

\(\hept{\begin{cases}AB< AM+MB\\AC< AM+MC\\BC< BM+BC\end{cases}}\Rightarrow AB+AC+BC< 2\left(AM+MB+MC\right)\)

b)

Gọi giao điểm của BM cắt AC tại D.

Do điểm M nằm trong tam giác ABC nên D thuộc AC.

\(\Rightarrow AC=AD+DC\)

Áp dụng bất đẳng thức tam giác vào tam giác ABD có:

BD<AB+AD => MB+MD<AB+AD(1)

Áp dụng bất đẳng thức tam giác vao tam giác MDC có:

MC<DC+MD(2)

Cộng vế theo vế của (1) với (2) ta có:

\(MB+MD+MC< AB+AD+DC+MD\)

\(\Rightarrow MB+MC< AB+\left(AD+DC\right)\)

\(\Rightarrow MB+MC< AB+AC\left(3\right)\)

chứng minh tương tự ta được:\(\hept{\begin{cases}MA+MC< BC+AB\left(4\right)\\MC+MB< AC+BC\left(5\right)\end{cases}}\)

Từ (3);(4):(5) suy ra \(2\left(AB+BC+CA\right)>2\left(MA+MB+MC\right)\)

Nguyễn Thị Ánh Tuyết _29...
Xem chi tiết
Nguyễn Tiến Hùng
Xem chi tiết
Nguyễn Tiến Hùng
17 tháng 3 2023 lúc 9:10

giải hộ

 

Thanh Huyền
Xem chi tiết
Võ Mỹ Hảo
Xem chi tiết
Tiểu Thiên Bình
Xem chi tiết
ha van minh
Xem chi tiết