Cho M là một điểm nằm trong tam giác ABC. Chứng minh
1/2*(AB+BC+CA) < MA + MB + MC < AB + AC + BC
cho m là điểm nằm trong tam giác abc .
chứng minh: ma+mb+mc>ab+AC+BC
__________
2
$M$ là điểm nằm trong $ΔABC$
nên ta có các tam giác $ΔMAB;MAC;MBC$
Xét $ΔMAB$ có: $MA+MB>AB$ (quan hệ giữa 3 cạnh trong 1 tam giác;bất đẳng thức tam giác)
tương tự $ΔMAC$ có: $MA+MC>AC$
$ΔMBC$ có: $MB+MC>BC$
nên $MA+MB+MA+MC+MB+MC>AB+BC+CA$
suy ra $2.(MA+MB+MC)>AB+BC+CA$
hay $MA+MB+MC>\dfrac{AB+BC+CA}{2}$
Cho điểm M nằm trong tam giác ABC. 1) So sánh AB với MA + MB . 2) CMR: AB + AC + BC < 2(MA + MB + MC) . 3) Chứng minh rằng MA + MB +MC lớn hơn nửa chu vi tam giác ABC.
cho tam giác ABC điểm M nằm trong Δ đó . c/m a, AB + BC + CA < 2 { MA + MB + MC } B,2 { MA + MB + MC }< 2 { AB + BC + CA }
a)
Áp dụng bất đẳng thức tam giác,ta có:
\(\hept{\begin{cases}AB< AM+MB\\AC< AM+MC\\BC< BM+BC\end{cases}}\Rightarrow AB+AC+BC< 2\left(AM+MB+MC\right)\)
b)
Gọi giao điểm của BM cắt AC tại D.
Do điểm M nằm trong tam giác ABC nên D thuộc AC.
\(\Rightarrow AC=AD+DC\)
Áp dụng bất đẳng thức tam giác vào tam giác ABD có:
BD<AB+AD => MB+MD<AB+AD(1)
Áp dụng bất đẳng thức tam giác vao tam giác MDC có:
MC<DC+MD(2)
Cộng vế theo vế của (1) với (2) ta có:
\(MB+MD+MC< AB+AD+DC+MD\)
\(\Rightarrow MB+MC< AB+\left(AD+DC\right)\)
\(\Rightarrow MB+MC< AB+AC\left(3\right)\)
chứng minh tương tự ta được:\(\hept{\begin{cases}MA+MC< BC+AB\left(4\right)\\MC+MB< AC+BC\left(5\right)\end{cases}}\)
Từ (3);(4):(5) suy ra \(2\left(AB+BC+CA\right)>2\left(MA+MB+MC\right)\)
Cho tam giác ABC nhọn , AC < AB < BC . M là trung điểm nằm trong tam giác . Chứng minh MA + MB + MC < AC + BC
Cho tam giác ABC , đường trung tuyến BD và CE cắt tại G, biết BD=CE
a) Chứng minh AG vuông góc với BC
b) Cho M là một điểm nằm trong tam giác.
chứng minh : MA + MB + MC > AB + BC+ AC : 2
Cho tam giác ABC nhọn , AC < AB < BC . M là trung điểm nằm trong tam giác . Chứng minh MA + MB + MC < AC + BC .. TOÁN LỚP 7
1 ) Cho tam giác ABC . Gọi M là một điểm nằm trong tam giác . Chứng minh rằng : MA + MB + MC > nửa chu vi tam giác đó
2 ) Cho tam giác ABC . Gọi M là trung điểm cạnh BC . Chứng minh rằng : AM < AB + AC / 2
cho tam giác ABC, M là trung điểm nằm trong tam giác ABC. Cm: AB+AC+BC < 2(MA+MB+MC)
cho tam giác ABC và điểm M nằm trong tam giác CMR : 1/2 AB+AC+BC<MA+MB+MC<AB+AC+BC