Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dnt
Xem chi tiết
pham ha anh
Xem chi tiết
Trần Trương Quỳnh Hoa
13 tháng 11 2015 lúc 17:50

 CHO A =1/2.3/4.5/6<9999/10000

luffy vua hai tac
Xem chi tiết
Mizuhoshi Ah
Xem chi tiết
Bùi Thị Minh Huyền
14 tháng 4 2016 lúc 20:57

mình sorry, mih nhầm

đáp án phải là .................10 123 499

Bây gio thì chac chan dung

Nhớ bấm ***k cho hinh nha

Mizuhoshi Ah
14 tháng 4 2016 lúc 20:21

giup minh nha

Vongola Tsuna
14 tháng 4 2016 lúc 20:23

132442+224*22622-9999+222*22224=10123499

thị phương linh lê
Xem chi tiết
Thuỳ Linh Nguyễn
22 tháng 3 2023 lúc 21:16

\(M=1+\dfrac{1}{5}+\dfrac{3}{35}+...+\dfrac{3}{9999}\\ =\dfrac{3}{3}+\dfrac{3}{15}+\dfrac{3}{35}+...+\dfrac{3}{9999}\\ =\dfrac{3}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{3}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{3}{2}\cdot\dfrac{100}{101}=\dfrac{150}{101}\)

Phan Việt Đức
Xem chi tiết
Lê Khánh Linh
5 tháng 5 2021 lúc 22:22

B< 1+(1/1.2+1/2.3+...+1/62.63)

B<1+(1-1/2+1/2-1/3+...+1/62-1/63)

B<1+1-1/63

B<2-1/63

B<6-3/189

mà 6-3/189<6 

Vậy B<6

b, gọi D=2/3.4/5....10000/10001

Ta có: 1/2<2/3     3/4<4/5      .. .....      9999/10000<10000/10001

=> C<D                 1

C.D=1/2.3.4.....9999/10000.2/3.4/5...10000/10001

C.D=1/10001       2

Từ 1 : C<D => C.C<C.D<1/10001

                   =>C^2<1/10001<1/10000

                   =>C^2<(1/100)^2

Vậy C<1/100 (đpcm)

Khách vãng lai đã xóa
Vũ Văn Thành
Xem chi tiết
Takishima Hotaru
11 tháng 3 2017 lúc 21:35

Ta cóC= \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}......\dfrac{9999}{10000}\)

Đặt A = \(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}.....\dfrac{10000}{10001}\)

Khi đó AC = \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.....\dfrac{9999}{10000}.\dfrac{10000}{10001}\)= \(\dfrac{1}{10001}\)

Do \(\dfrac{1}{2}< \dfrac{2}{3}\)

\(\dfrac{3}{4}< \dfrac{4}{5}\)

.............

\(\dfrac{9999}{10000}< \dfrac{10000}{10001}\)

=> C<A=>C2<CA hay C2< \(\dfrac{1}{10001}\) , mà \(\dfrac{1}{10001}\)<\(\dfrac{1}{10000}\)=> C2< \(\dfrac{1}{10000}\)

Khi đó C < \(\sqrt{\dfrac{1}{10000}}\)hay C< \(\dfrac{1}{100}\)( đpcm )

Nguyễn Khanh
Xem chi tiết
Khánh Linh
26 tháng 7 2017 lúc 16:06

a, Ta có : \(\dfrac{1}{2^2}=\dfrac{1}{4};\dfrac{1}{3^2}< \dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{4^2}< \dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4}\)

\(...\dfrac{1}{100^2}< \dfrac{1}{99.100}=\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{100}< 2\)

@Nguyễn Khanh

Khánh Linh
26 tháng 7 2017 lúc 16:19

b, 1 = 1
1/2 + 1/3 = 1/(1 + 1) + 1/(1 + 2) < 2/(1 + 1) = 2/2 = 1
1/4 + 1/5 + 1/6 + 1/7 = 1/(3 + 1) + 1/(3 + 2) + 1/(3 + 3) + 1/(3 + 4) < 4/(3 + 1) = 4/4 = 1
1/8 + 1/9 + ... + 1/15 = 1/(7 + 1) + 1/(7 + 2) + ... + 1/(7 + 8) < 8/(7 + 1) = 8/8 = 1
1/16 + 1/17 + ... + 1/31 = 1/(15 + 1) + 1/(15 + 2) + ... + 1/(15 + 16) < 16/(15 + 1) = 16/16 = 1
1/32 + 1/33 + ... + 1/63 = 1/(31 + 1) + 1/(31 + 2) + ... + 1/(31 + 32) < 32/(31 + 1) = 32/32 = 1
=> 1 + 1/2 + 1/3 + 1/4 + ... + 1/64 < 1 + 1 + 1 + 1 + 1 + 1
=> 1 + 1/2 + 1/3 + 1/4 + ... + 1/64 < 6 (đpcm)
@Nguyễn Khanh

Khánh Linh
26 tháng 7 2017 lúc 16:26

Đặt A = 1/2 . 3/4 . 5/6 . ... . 9999/10000 (A > 0)
Và B = 2/3 . 4/5 . 6/7 . ... . 10000/10001 (B > 0)
Ta có A.B = 1/2 . 2/3 . 3/4 . ... . 10000/10001 = 1/10001 (1)
Mặt khác :
1/2 < 2/3
3/4 < 4/5
...
9999/10000 < 10000/10001
Nhân tất cả theo vế ---> A < B ---> A2 < A.B (2)
Từ (1),(2) => A2 < 1/10001 => A < \(\sqrt{\dfrac{1}{10001}}\) < \(\sqrt{\dfrac{1}{10000}}\) = 1/100 (đpcm)

@Nguyễn Khanh

trịnh quỳnh trang
Xem chi tiết
Nguyễn Xuân Tùng
5 tháng 5 2015 lúc 23:02

 Đặt A = (1/2)(3/4)(5/6) ... (9999/10000) (A > 0) 
.Và B = (2/3)(4/5)(6/7) ... (10000/10001) (B > 0) 
Ta có A.B = (1/2)(2/3)(3/4) ... (10000/10001) = 1/10001 (1) 
Mặt khác : 
1/2 < 2/3 
3/4 < 4/5 
................ 
................ 
9999/10000 < 10000/10001 
Nhân tất cả vế theo vế ---> A < B ---> A² < A.B (2) 
(1),(2) ---> A² < 1/10001 ---> A < căn(1/10001) < căn(1/10000) = 1/100 (đpcm)

Công chúa Tuyết
26 tháng 4 2017 lúc 18:29

Ta có C = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)

Gọi D = \(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{10000}{10001}\)

Mà \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{9999}{10000}< \frac{10000}{10001}\)

=> C<D

Lại có C.D = \(\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\right)\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{10000}{10001}\right)\)

C.D = \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{9999}{10000}.\frac{10000}{10001}\)

C.D = \(\frac{1}{10001}\)

Vì C<D

=> C.C < C.D

hay  C.C <\(\frac{1}{10001}\)

=> C < \(\frac{1}{10001}< \frac{1}{100}\)(đpcm)

Phạm Tuấn Minh
9 tháng 4 2019 lúc 21:50

1/2.3/4.5/6....9999/10000

=1/2