Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hày Cưi
Xem chi tiết
không cần biết
Xem chi tiết

Sửa đề:  Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)

Áp dụng bđt Cauchy-Schwarz ta có:

\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)

Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)

          \(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)

Cộng từng vế các bđt trên ta được

\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c=1

Khách vãng lai đã xóa
Nguyễn Hữu Lâm
Xem chi tiết
Hoàng Như Quỳnh
22 tháng 6 2021 lúc 14:47

vì \(a+b+c=1\)

\(< =>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{c}{b}+\frac{b}{c}+\frac{a}{c}\)

\(=3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)

ta có pt:

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(3+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\right)\)

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{3}{4}+\frac{a^2+b^2}{4ab}+\frac{b^2+c^2}{4bc}+\frac{c^2+a^2}{4ca}\)

áp dụng bđt cô- si( cauchy) gọi pt là P 

\(P\ge2\sqrt{\frac{ab}{a^2+b^2}\frac{a^2+b^2}{4ab}}+2\sqrt{\frac{bc}{b^2+c^2}\frac{b^2+c^2}{4bc}}+2\sqrt{\frac{ca}{c^2+a^2}\frac{c^2+a^2}{4ca}}+\frac{3}{4}\)

\(P\ge2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+2\sqrt{\frac{1}{4}}+\frac{3}{4}\)

\(P\ge2.\frac{1}{2}+2.\frac{1}{2}+2.\frac{1}{2}+\frac{3}{4}\)

\(P\ge1+1+1+\frac{3}{4}=\frac{15}{4}\)

dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

<=>ĐPCM

Khách vãng lai đã xóa
Hoàng Thị Thúy
Xem chi tiết
Duy Phúc
2 tháng 12 2017 lúc 12:52

\(\sqrt[4]{b^3}\)

Tran Le Khanh Linh
3 tháng 5 2020 lúc 9:59

Vì a+b+c=1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{a}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=2+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)

Do đó

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{ab}\right)+\left(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{bc}\right)+\left(\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}\right)+\frac{3}{4}\)

\(\ge2\sqrt{\frac{ab}{a^2+b^2}\cdot\frac{a^2+b^2}{ab}}+2\sqrt{\frac{bc}{c^2+b^2}\cdot\frac{c^2+b^2}{bc}}+2\sqrt{\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}}+\frac{3}{4}\)

\(=2\cdot\frac{1}{2}+2\cdot\frac{1}{2}+\frac{2}{3}=\frac{15}{4}\)

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)

Khách vãng lai đã xóa
Kim
Xem chi tiết
Phạm Thị Thùy Linh
3 tháng 5 2019 lúc 21:35

Xét hiệu :

\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\)

\(=\frac{b+a}{ab}-\frac{4}{a+b}\)

\(=\frac{a+b}{ab}-\frac{4}{a+b}\)

\(=\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\)

\(=\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\)

\(=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\)

Có \(\left(a-b\right)^2\ge0\)

Mà a , b dương \(\Rightarrow\)\(ab\left(a+b\right)\ge0\)

\(\Rightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)

Hay \(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(đpcm\right)\)

Shinichi Kudo
3 tháng 5 2019 lúc 22:01

\(\frac{1}{a}\)\(\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\)\(\frac{b\left(a+b\right)}{ab\left(a+b\right)}+\frac{a\left(a+b\right)}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)

\(\Rightarrow\)b( a  + b ) + a( a + b ) \(\ge\)4ab

\(\Leftrightarrow\)ab + b2 + a2 + ab - 4ab  \(\ge\)0

\(\Leftrightarrow\)a2  -  2ab + b2 \(\ge\)

\(\Leftrightarrow\)( a - b )2 \(\ge\)0 (  luôn đúng với \(\forall\)a , b)

Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

tth_new
4 tháng 5 2019 lúc 10:32

Bạn tham khảo bài làm của mình tại đây: Câu hỏi của Phạm Thị Thắm Phạm - Toán lớp 8 

l҉o҉n҉g҉ d҉z҉
Xem chi tiết

(

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhh

Khách vãng lai đã xóa
Kuramajiva
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:34

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:37

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:39

Câu 1:

\(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(VT=1-\dfrac{1}{n}< 1\) (đpcm)

Võ Thị Minh Trang
Xem chi tiết
Cần Cần
19 tháng 5 2017 lúc 13:25

Áp dụng BĐT Cô-si cho 2 số dương \(\frac{a}{bc}\) và \(\frac{b}{ca}\) ta có

\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{abc^2}}=2.\frac{1}{c}\)

Làm tương tự ta được

\(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\)

\(\frac{b}{ac}+\frac{c}{ab}\ge\frac{2}{a}\)

Cộng theo từng vế rồi chia cho 2. Ta được BĐT cần chứng minh. 

Trần Mai Ngọc
Xem chi tiết
Hoàng Đức Khải
2 tháng 4 2019 lúc 22:40

Bđt cần chứng minh tương đương với:

\(\left(a+b\right)^2\ge4ab\) 

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (Đúng)

Dấu "=" xảy ra khi a=b

Upin & Ipin
2 tháng 4 2019 lúc 22:40

<=> (a+b)2 >= 4ab (1)

<=> a2 +2ab+b2 >= 4ab

<=> a2 -2ab+b2>=0

<=> (a-b)2>=0 (2)

vi bat dang thuc (2) luon dung voi moi a,b nen bdt (1) duoc chung minh

tth_new
3 tháng 4 2019 lúc 8:52

Áp dụng BĐT AM-GM (Cô si) vào:

\(ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow\frac{a+b}{ab}\ge\frac{\left(a+b\right)}{\frac{\left(a+b\right)^2}{4}}=\frac{4}{a+b}^{\left(đpcm\right)}\) 

Dấu "=" xảy ra khi a =b