cho m,n là hai số nguyên khác 0 thỏa mãn : 4/m-1/n=1.chứng minh m chia hết cho n .
cho m,n là hai số nguyên khác 0 thỏa mãn: 4/m-1/m=1.chứng minh m chia hết cho n
\(Tham\) \(khảo\) \(nha!!!\)
\(\Rightarrow\)\(\dfrac{4}{m}-\dfrac{1}{n}=1\)
\(\Rightarrow\)\(\dfrac{4}{m}=1+\dfrac{1}{n}\)
\(\Rightarrow\)\(\dfrac{4}{m}=\dfrac{n+1}{n}\)
\(\Rightarrow\)\(4n=m\left(n+1\right)\)
\(\Rightarrow\)\(4n=mn+n\)
\(\Rightarrow\)\(4n-mn=m\)
\(\Rightarrow\)\(n\left(4-m\right)=m\)
\(\Rightarrow\)\(n;4-m\inƯ_{\left(m\right)}\)
\(xét\) \(riêng\) \(n_{\in}Ư_{\left(m\right)}\)
\(\Rightarrow m:n\)
cho m,n là 2 số nguyên khác 0 thỏa mãn 4/m-1/n=1.Chứng minh m chia hết cho n toan lop 6
Do n=1 nên Z sẽ chia hết cho 1
Nên 4/m-1/ chia hết cho n
nên m chia hết cho n
cho m n là số tự nhiên thỏa mãn m2-2020n2+2022 chia hết cho m,n chứng minh rằng m,n là hai số lẻ và nguyên tố cùng nhau
Giải (copy)
Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4 và mn chia hết cho 4 suy ra m2-2023n2+2022 không chia hết cho mn (loại)
nếu m,n khác tính chẵn lẻ thì m2- 2023n2+ 2022 lẻ và mn chẵn do đó m2-2023n2+2022 không chia hết cho mn (loại)
Vậy m,n là những số lẻ
Gọi (m,n) = d => m2- 2023n2 ⋮ d2 ; mn ⋮ d2 mà m2- 2023n2 + 2022 ⋮ mn nên 2022 ⋮ d2
Mặt khác 2022 = 2.3.337 tức 2022 không có ước chính phương nào ngoài 1 do đó d2 = 1 => d = 1 => (m,n) =1 vậy m,n là hai số nguyên tố cùng nhau .
Em chưa hiểu tai sao
Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4
thầy Cao Lộc phân tích cho em với ạ
Cặp \(m=2\) , \(n=1\) vẫn thỏa \(m^2-2020n^2+2022⋮mn\)
Để chứng minh rằng m và n là hai số lẻ và nguyên tố cùng nhau, ta cần thực hiện các bước sau đây:
Bước 1: Giả sử rằng m và n là hai số tự nhiên thỏa mãn m^2 - 2020n^2 + 2022 chia hết cho mn.
Bước 2: Ta sẽ chứng minh rằng m và n là hai số lẻ.
Giả sử rằng m là số chẵn, tức là m = 2k với k là một số tự nhiên. Thay thế vào biểu thức ban đầu, ta có:
(2k)^2 - 2020n^2 + 2022 chia hết cho 2kn
Simplifying the equation, we get:
4k^2 - 2020n^2 + 2022 chia hết cho 2kn
Dividing both sides by 2, we have:
2k^2 - 1010n^2 + 1011 chia hết cho kn
Do 2k^2 chia hết cho kn, vì vậy 2k^2 cũng chia hết cho kn. Từ đó, 1011 chia hết cho kn.
Bởi vì 1011 là một số lẻ, để 1011 chia hết cho kn, thì kn cũng phải là một số lẻ. Vì vậy, n cũng phải là số lẻ.
Do đó, giả sử m là số chẵn là không hợp lệ. Vậy m phải là số lẻ.
Bước 3: Chứng minh rằng m và n là hai số nguyên tố cùng nhau.
Giả sử rằng m và n không phải là hai số nguyên tố cùng nhau. Điều đó có nghĩa là tồn tại một số nguyên tố p chia hết cả m và n.
Vì m là số lẻ, n là số lẻ và p là số nguyên tố chia hết cả m và n, vì vậy p không thể chia hết cho 2.
Ta biểu diễn m^2 - 2020n^2 + 2022 dưới dạng phân tích nhân tử:
m^2 - 2020n^2 + 2022 = (m - n√2020)(m + n√2020)
Vì p chia hết cả m và n, p cũng phải chia hết cho (m - n√2020) và (m + n√2020).
Tuy nhiên, ta thấy rằng (m - n√2020) và (m + n√2020) không thể cùng chia hết cho số nguyên tố p, vì chúng có dạng khác nhau (một dạng có căn bậc hai và một dạng không có căn bậc hai).
Điều này dẫn đến mâu thuẫn, do đó giả sử ban đầu là sai.
Vậy ta có kết luận rằng m và n là hai số tự nhiên lẻ và nguyên tố cùng nhau.
1 nếu m, n là các số tự nhiên thỏa mãn 2m^2+m=3n^2+n thì m- n là số nguyên tố
2 chứng minh với n thuộc Z chẵn và n >4 thì n^4-4n^3-16n^2+16 chia hết cho 383
3 cho a, b là số chính phương lẻ. chứng minh (a-1((b-1) chia hết cho 192
4 tìm nghiệm nguyên tố của phương trình x^2- 2y= 1
Cho m và n là số nguyên khác 0 thỏa mãn 4/m - 1/n = 1. Tìm m; n
Hôm nay olm sẽ hướng dẫn em giải bài này như sau
Biến đổi đưa bài toán trở thành dạng tìm điều kiện để phân số là một số nguyên em nhé
\(\dfrac{4}{m}\) - \(\dfrac{1}{n}\) = 1 ⇒ 4n - m = mn ⇒m + mn = 4n ⇒ m(1+n) = 4n
m = \(\dfrac{4n}{1+n}\) (n \(\ne\) 0; -1)
m \(\in\) Z ⇔ 4n ⋮ 1 + n ⇒ 4n + 4 - 4 ⋮ 1 + n ⇒ 4(n+1) - 4 ⋮ 1 + n
⇒ 4 ⋮ 1 + n ⇒ n + 1 \(\in\) { -4; -2; -1; 1; 2; 4}
⇒ n \(\in\) { -5; -3; -2; 0; 1; 3} vì n \(\ne\) 0 ⇒ n \(\in\){ -5; -3; -2; 1; 3}
⇒ m \(\in\){ 5; 6; 8; 2; 3}
Vậy các cặp số nguyên m; n thỏa mãn đề bài lần lượ là:
(m; n) =(5; -5); (6; -3); ( 8; -2); (2; 1); ( 3; 3)
cho m,n là 2 số nguyên dương thỏa mãn điều kiện 3^m+ 5^n chia hết cho 8 chứng minh 3^n+ 5^m chia hết cho 8.
Cho m, n là những số nguyên dương thỏa mãn: \(\frac{m}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{1318}+\frac{1}{1319}\)
Chứng minh rằng: m chia hết cho 1979
giúp mình với
Cho m, n là các số nguyên thỏa mãn m^2 + n^2 chia hết cho 5. Chứng minh tồn tại ít nhất một trong hai số 2m+n hoặc m+2n chia hết cho 5. nhanh có tick
Ta có:
( 2m + n ) . ( m + 2n ) = 2m . m + n . m + 2m . 2n + n . 2n
= 2m2 + mn + 4mn + 2n2
= 2 ( m2 + n2 ) + 5mn
Vì m2 + n2 chia hết cho 5 => 2 ( m2 + n2 ) chia hết cho 5 và 5mn chia hết cho 5
=> 2 ( m2 + n2 ) + 5mn chia hết cho 5
=> (2m + n ) ( m + 2n ) chia hết cho 5
=> Tồn tại ít nhất 1 trong hai số 2m + n hoặc m + 2n chia hết cho 5.
Chứng minh rằng nếu các số nguyên dương m,n thỏa mãn 2m+1 chia hết cho 2n+1 thì m chia hết cho n. Các bạn giúp mình với, mình cần gấp