Rút gọn phân thức :
A = 1 / (a - b )(a - c) + 1/ (b - c)(b - a) +1/(c - a)(c - b)
rút gọn biểu thức (b-c)-(a-c-1)-(a+b-c) , (a-b-c)-(b-c-a)+(c-b-a) , 2 x(a-b)-2 x(b-c)-2 x(c-a)
a: =b-c-a+c+1-a-b+c
=-2a+1
b: =a-b-c-b+c+a+c-b-a
=c-3b+a
c: =2(a-b-b+c-c+a)
=2(2a-2b)
=4a-4b
a) \(\left(b-c\right)-\left(a-c-1\right)-\left(a+b-c\right)\)
\(=b-c-a+c+1-a-b+c\)
\(=c-2a+1\)
b) \(\left(a-b-c\right)-\left(b-c-a\right)+\left(c-b-a\right)\)
\(=a-b-c-b+c+a+c-b-a\)
\(=a-3b+c\)
c) \(2\cdot\left(a-b\right)-2\cdot\left(b-c\right)-2\cdot\left(c-a\right)\)
\(=2\cdot\left(a-b-b+c-c+a\right)\)
\(=2\cdot\left(2a-2b\right)\)
\(=4a-4b\)
1/(a-b)(a-c) + 1/(b-c)(b-a) + 1/(c-a)(c-b)
rút gọn biểu thức trên
\(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-a\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{1}{\left(a-b\right)\left(a-c\right)}-\frac{1}{\left(b-c\right)\left(a-b\right)}+\frac{1}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{b-c-a+c+a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=0\)
(a - b)(a - c) + 1
= a(b - c) + 1
(b - c)(b - a) + 1
= b(c - a) + 1
(c - a)(c - b)
= c(a - b)
học tốt!
1/(a-b)(a-c) + 1/(b-c)(b-a) + 1/(c-a)(c-b)
=(b-c+c-a+a-b)/(a-b)(b-c)(a-c)
= 0
Ra rồi ó kkk
1cho biểu thức:
A=(-a+b-c)-(-a-b-c)
a) rút gọn A
b)tính giá tri của A khi:a=1:b=-1:c=-2
2cho biểu thức:
B=(-2a+3b-4c)-(-2a-3b-4c)
a) rút gọn B
b)tính giá trị của B khi:a-2012:b=-1:c=-2013
Bài 1 :
\(A=\left(-a+b-c\right)-\left(-a-b-c\right)\)
\(=-a+b-c+a+b+c=2b\)
Ta có b = -1 ta được : \(2b=2\left(-1\right)=-2\)
Vậy \(A=-2\)
\(B=\left(-2a+3b-4c\right)-\left(-2a-3b-4c\right)=-2a+3b-4c+2a+3b+4c\)
\(=6b\)
Ta có : b = -1 khi đó: \(B=6b=6\left(-1\right)=-6\)
Vậy B = -6
1/ Cho a,b,c đối 1 khác nhau thỏa mãn điều kiện (a + b + c)^2 = a^2 + b^2 + c^2 (^ là mũ)
Rút gọn biểu thức: P= (a^2)/(a^2+2bc) + (b^2)/(b^2+2ac)+(c^2)/(c^2+2ab)
2/ Phân tích đa thức thành nhân tử: (x + 1)^4 + (x^2 + x +1)^2
3/ Phân tích đa thức thành nhân tử: ab(a - b) + bc(b - c) + ca(c - a)
\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b+b-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b\right)-ca\left(b-c\right)\)
\(=\left(a-b\right)\left(ab-ca\right)+\left(b-c\right)\left(bc-ca\right)\)
\(=\left(a-b\right)a\left(b-c\right)+\left(b-c\right)c\left(b-a\right)\)
\(=\left(a-b\right)a\left(b-c\right)-\left(b-c\right)c\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
mình làm vội, có chỗ nào sai bạn thông cảm nha
B1 Cho biểu thức: A=(-a+b-c)-(-a-b-c)
a) Rút gọn A
b)Tính giá trụ của A khi a = 1; b = -1; c = -2
B2 Cho biểu thức A =(-m+n-p)-(-m-n-p)
a) Rút gọn A
b)Tính giá trị của A khi m = 1; n = -1; p = -2
B3 Cho biểu thức : A=(-2a+3b-4c)-(-2a-3b-4c)
a) Rút gọn A
b)Tính giá trị của A khi a = 2012;b = -1;c = -2013
Cho biểu thức A= (-a+b-c) - (-a-b-c)
a) rút gọn biểu thức
b) Tính giá trị A biết a=1; b=-1; c=-2
a) Ta có:
\(A=\left(-a+b-c\right)-\left(-a-b-c\right)\)
\(=-a+b-c+a+b+c\)
\(=\left(-a+a\right)+\left(b+b\right)+\left(-c+c\right)\)
\(=0+2b+0\)
\(=2b\)
b) \(A=2b=2.\left(-1\right)=-2\)
a)A=(-a+b-c)-(-a-b-c)=-a+b-c+a+b+c=2b
b)A=2b=2x(-1)=-2
a,A = (-a + b - c) - (-a - b - c)
= -a + b - c + a + b + c
= (-a + a) + (b + b) + (-c + c)
= 0 + 2b + 0
= 2b
b, A = (-a + b - c) - (-a - b - c)
= [(-1) + (-1) - (-2)] - [(-1) - (-1) - (-2)]
= (-1) + (-1) + 2 + 1 - 1 - 2
= [(-1) + 1] + [(-1) - 1] + (2 - 2)
= 0 + (-2) + 0
= -2
Bài 1: Cho a+b+c=0; rút gọn biểu thức A= a^2/(a^2-b^2-c^2) + b^2/(b^2-c^2-a^2) + c^2/(c^2-b^2-a^2)
Bài 2: Cho abc=2; rút gọn A= a/(ab+a+2) + b/(bc+b+1) + 2c/(ac+2c+2)
Giup mk với!!!mk đang cần ạ!!!
bài 1:rút gọn phân thức
a) A=a+b/a^3+b^3 b) B=4a^2+2a+1/8a^2-1 c)C=2ab-b/8a^3-1
\(A=\frac{a+b}{a^3+b^3}=\frac{a+b}{\left(a+b\right)\left(a^2-ab+b^2\right)}=\frac{1}{a^2-ab+b^2}\)
\(C=\frac{2ab-b}{8a^3-1}=\frac{b\left(2a-1\right)}{\left(2a-1\right)\left(4a^2+2a+1\right)}=\frac{b}{4a^2+2a+1}\)
Câu b xem lại đề đi nhé
Bài 1: Cho biểu thức: A = (–m + n – p) – (–m – n – p)
a) Rút gọn A b) Tính giá trị của A khi m = 1; n = –1; p = –2
Bài 2. Cho biểu thức: A = (–2a + 3b – 4c) – (–2a – 3b – 4c)
a) Rút gọn A b) Tính giá trị của A khi a = 2012; b = –1; c = –2013
Bài 3. Bỏ dấu ngoặc rồi thu gọn biểu thức:
a) A = (a + b) – (a – b) + (a – c) – (a + c)
b) B = (a + b – c) + (a – b + c) – (b + c – a) – (a – b – c)
giải đầy đủ các phép tính giùm mình nhé,cảm ơn các bạn nhiều
a)
A= (-m+n-p)-(-m-n-p)
A= -m+n-p+m+n+p
A= (-m+m) +(n+n) + (-p+p)
A= 0+2n+0
A = 2n
Bài 1:
A = (-m + n - p) - (-m - n - p)
A = -m + n - p + m + n + p
A = (-m + m) + (n + n) - (p - p)
A = 2n
Với n = -1 => A = 2(-1) = -2
Bài 2:
A = (-2a + 3b - 4c) - (-2a -3b - 4c)
A = -2a + 3b - 4c + 2a + 3b + 4c
A = (-2a + 2a) + (3b + 3b) - (4c - 4c)
A = 6b
Với b = -1 => A = 6(-1) = -6
Bài 3:
a) A = (a + b) - (a - b) + (a - c) - (a + c)
A= a + b - a + b + a - c - a - c
A = (a - a + a - a) + (b + b) - (c + c)
A = 2(b - c)
b) B = (a + b - c) + (a - b + c) - (b + c - a) - (a - b - c)
B = a + b - c + a - b + c - b - c + a - a + b + c
B = (a + a + a - a) + (b - b - b + b) - (c - c + c - c)
B = 2a