đa giác đều 105 đỉnh. Hỏi có bao nhiêu đa giác đều có đỉnh là đỉnh của đa giác ban đầu
Cho đa giác đều 16 đỉnh. Hỏi có bao nhiêu tam giác vuông có ba đỉnh là ba đỉnh của đa giác đều đó?
A. 560
B. 112
C. 121
D. 128
Đáp án B
Để tam giác đó là tam giác vuông thì tam giác phải có 1 cạnh là đường kính của đa giác đều.
Khi ta chọn 1 đường kính sẽ còn lại 14 điểm để tọa với đường kính đó thành tam giác vuông.
Mà đa giác đều 16 đỉnh có 8 đường kính nên số tam giác vuông 8.12=112.
Cho đa giác đều 16 đỉnh. Hỏi có bao nhiêu tam giác vuông có ba đỉnh là ba đỉnh của đa giác đều đó?
A. 560
B. 112
C. 121
D. 128
Đáp án B.
Để tam giác đó là tam giác vuông thì tam giác phải có 1 cạnh là đường kính của đa giác đều. Khi ta chọn 1 đường kính sẽ còn lại 14 điểm để tọa với đường kính đó thành tam giác vuông. Mà đa giác đều 16 đỉnh có 8 đường kính nên số tam giác vuông 8.12=112.
Cho đa giác đều có 2001 cạnh. Hỏi có bao nhiêu đa giác đều phân biệt có đỉnh là các đỉnh của đa giác đã cho ?
Cho đa giác đều có 2n đỉnh (n >2)
a) Có bao nhiêu hình chữ nhật có đỉnh là đỉnh của đa giác
b) Có bao nhiêu tam giác vuông có đỉnh là đỉnh của đa giác
c) Có bao nhiêu tam giác tù có đỉnh là đỉnh của đa giác
d) Có bao nhiêu tam giác nhọn có đỉnh là đỉnh của đa giác
Đa giác đều 24 đỉnh,Hỏi có bao nhiêu tam giác không cân có 3 đỉnh là 3 đỉnh của đa giác
Cho đa giác đều có 2001 cạnh. Hỏi có bao nhiêu đa giác đều phân biệt có đỉnh là các đỉnh của đa giác đã cho ?
Cho đa giác đều 2018 đỉnh. Hỏi có bao nhiêu tam giác có đỉnh là đỉnh của đa giác và có một góc lớn hơn 100 độ ?
Gọi \(A_1,A_2,...,A_{2018}\) là các đỉnh của đa giác đều đó.
Gọi \(\left(O\right)\) là đa giác đều ngoại tiếp đa giác đó.
Các đỉnh của đa giác chia \(\left(O\right)\) thành 2018 cung tròn bằng nhau, mỗi cung có số đo \(\dfrac{360^o}{2018}\).
Các góc của tam giác sẽ là góc nội tiếp của \(\left(O\right)\) chắn các cung có số đo \(n.\dfrac{360^o}{2018}\), góc tương ứng của tam giác sẽ là \(\dfrac{n}{2}.\dfrac{360^o}{2018}\).
Xét tam giác ABC có các đỉnh là đỉnh của đa giác đều, với A cố định. Ta sẽ tìm số cách xác định điểm B, C thỏa mãn \(\widehat{BAC}>100^o\).
suy ra \(\stackrel\frown{BC}>160^o\) khi đó có số cung thỏa mãn là \(\left[\dfrac{160^o}{\dfrac{360^o}{2018}}\right]=896\) suy ra có \(897\) đỉnh. Vậy có số cách là: \(2018.C_{896}^2\) cách.
Cho đa giác đều 2n đỉnh (n>2)
a) có bao nhiêu tam giác cân có đỉnh là đỉnh của đa giác
b) có bao nhiêu tam giác đều _____________________
Cho đa giác đều có 2018 đỉnh. Hỏi có bao nhiêu hình chữ nhật có 4 đỉnh là các đỉnh của đa giác đã cho?