Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 11 2018 lúc 8:40

Đáp án B

Để tam giác đó là tam giác vuông thì tam giác phải có 1 cạnh là đường kính của đa giác đều.

Khi ta chọn 1 đường kính sẽ còn lại 14 điểm để tọa với đường kính đó thành tam giác vuông.

Mà đa giác đều 16 đỉnh có 8 đường kính nên số tam giác vuông 8.12=112.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 2 2018 lúc 8:50

Đáp án B.

Để tam giác đó là tam giác vuông thì tam giác phải có 1 cạnh là đường kính của đa giác đều. Khi ta chọn 1 đường kính sẽ còn lại 14 điểm để tọa với đường kính đó thành tam giác vuông. Mà đa giác đều 16 đỉnh có 8 đường kính nên số tam giác vuông 8.12=112.

Lê Chí Cường
Xem chi tiết
Hunter of Death
15 tháng 10 2016 lúc 19:39

làm đc nhắn tau với

Đặng Gia Ân
Xem chi tiết
Hội Bangbang
Xem chi tiết
Lê Chí Cường
Xem chi tiết
Phan
Xem chi tiết
Đoàn Đức Hà
28 tháng 5 2022 lúc 0:19

Gọi \(A_1,A_2,...,A_{2018}\) là các đỉnh của đa giác đều đó. 

Gọi \(\left(O\right)\) là đa giác đều ngoại tiếp đa giác đó. 

Các đỉnh của đa giác chia \(\left(O\right)\) thành 2018 cung tròn bằng nhau, mỗi cung có số đo \(\dfrac{360^o}{2018}\).

Các góc của tam giác sẽ là góc nội tiếp của \(\left(O\right)\) chắn các cung có số đo \(n.\dfrac{360^o}{2018}\), góc tương ứng của tam giác sẽ là \(\dfrac{n}{2}.\dfrac{360^o}{2018}\).

Xét tam giác ABC có các đỉnh là đỉnh của đa giác đều, với A cố định. Ta sẽ tìm số cách xác định điểm B, C thỏa mãn \(\widehat{BAC}>100^o\).

suy ra \(\stackrel\frown{BC}>160^o\) khi đó có số cung thỏa mãn là \(\left[\dfrac{160^o}{\dfrac{360^o}{2018}}\right]=896\) suy ra có \(897\) đỉnh. Vậy có số cách là: \(2018.C_{896}^2\) cách.  

Đặng Gia Ân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 5 2019 lúc 18:22