Cho S=1/20+1/21+1/22+...+1/60. CMR 11/15<S<3/2
CMR:
a,1/11+1/12+1/13+....+1/50>16/15
b,1/21+1/22+1/23+...+1/60>5/6
THANHS!?!
11/15<1/21+1/22+1/23+...+1/60
cho h=\(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{60}\) CMR \(\dfrac{11}{15}< h< \dfrac{3}{2}\)
Chứng minh:
11/15<1/21+1/22+1/23+...+1/60<3/2
Đặt \(A=\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}\)
\(A=\left(\frac{20}{20.21}+\frac{21}{21.22}+..+\frac{39}{39.40}\right)+\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)
\(\Rightarrow A>20.\left(\frac{1}{20.21}+\frac{1}{21.22}+...+\frac{1}{39.40}\right)+40.\left(\frac{1}{40.41}+\frac{1}{41.42}+...+\frac{1}{59.60}\right)\)
\(A>20\cdot\left(\frac{1}{20}-\frac{1}{40}\right)+40\cdot\left(\frac{1}{40}-\frac{1}{60}\right)=\frac{5}{6}>\frac{11}{15}\)
Mặt khác : \(A< 40\cdot\left(\frac{1}{20.21}+\frac{1}{21.22}+...+\frac{1}{38.40}\right)+60\cdot\left(\frac{1}{40.41}+\frac{1}{41.42}+...+\frac{1}{59.60}\right)\)
\(A< 40\cdot\left(\frac{1}{20}-\frac{1}{40}\right)+60\cdot\left(\frac{1}{40}-\frac{1}{60}\right)=\frac{3}{2}\)
Vậy ....
Chứng tỏ rằng: 11/15 < 1/21 + 1/22 + 1/23 + ... + 1/59 + 1/60 < 3/2
Chứng tỏ rằng: 11/15 < 1/21 + 1/22 + 1/23 + ... + 1/59 + 1/60 < 3/2
Cho S = 1/21 + 1/22 + 1/23 +... + 1/60
S1=1/21 + 1/22 +..+ 1/40 (20 số hạng); S2= 1/41 + 1/42 +... + 1/60 (20 số hạng)
* Ta thấy: S1 > 1/40 x 20 = 1/2 (vì 1/40 = 1/40, 19 số hạng kia đều lớn hơn 1/40); S2 > 1/60 x 20 = 1/3
\(\Rightarrow\)S > 1/2 + 1/3 = 5/6 = 25/30 > 22/30 = 11/15
Vậy 1/21 + 1/22 + ... + 1/60 > 11/15
* Ta thấy: S1 < 1/21 x 20 = 20/21(vì 1/20 = 1/20, 19 số hạng còn lại đều bé hơn 1/21); S2 < 1/41 x 20 = 20/41
\(\Rightarrow\)S < 20/21 + 20/41 = 1240/861 < 3/2 (đoạn này thì bạn phải dùng máy tính chứ mik ko bt tính nhanh kiểu j)
Ta có đpcm
Chứng minh
11/15<1/21+1/22+1/23+....+1/59+1/60<3/2
Chứng minh rằng:
11/15 < 1/21 + 1/22 + 1/23+.....+1/58 + 1/59 + 1/60 < 3/2
Đặt A=1/21+1/22+...+1/60=(1/21+1/22+...+1/40)+(1/41+1/42+...+1/60)
Ta có:1/21>1/40, 1/22>1/40,..., 1/39>1/40
=>1/21+1/226+...+1/40>1/40+1/40+...+1/40=1/40.20=1/2
1/41>1/60, 1/42>1/60,...,1/59>1/60
=>1/41+1/42+...+1/60>1/60+1/60+...+1/60=1/60.20=1/3
=>1/21+1/22+...+1/60>1/2+1/3=5/6>11/15
=>A>11/15 (1)
Lại có: 1/21<1/20, 1/22<1/20,...,1/40<1/20
=>1/21+1/22+...+1/40<1/20+1/20+...+1/20=1/20.20=1
1/41<1/40, 1/42<1/40,...,1/60<1/40
=>1/41+1/42+...+1/60<1/40+1/40+...+1/40=1/40.20=1/2
=>1/21+1/22+...+1/60<1+1/2=3/2
=>A<3/2 (2)
Từ (1) và (2)
=>11/15<A<3/2
=>11/15<1/21+1/22+...+1/60<3/2 (đpcm)
CTR\(\dfrac{11}{15}< \dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+...+\dfrac{1}{59}+\dfrac{1}{60}< \dfrac{3}{2}\)
Bạn vào đây nhé! https://hoc24.vn/hoi-dap/question/206800.html
Câu hỏi giống nhau nên bạn vào link đó xem đỡ mất công mình ghi lại nhé!