Cho tam giác ABC vuông tại A, AH vuông góc với BC tại H. M thuộc BC sao cho BM=BA. MN vuông góc với AC(N thuộc AC)CMR:
a)Tam giác AHN cân
b)BC+AH>AB+AC
c)\(2AC^2-BC^2=CH^2-BH^2\)
Cho tam giác ABC vuông tại A ( AB<AH); đường cao AH lấy điểm M, sao cho BM= BA. Từ M kẻ MN vuông góc với AC (N thuộc AC). Chứng minh rằng:
a,Tam giác ANH cân.
b, BC + AH > AB+ AC.
c, \(2AC^2-BC^2=CH^2-BH^2\)
Cho tam giác ABC vuông tại A có AB<AC, đường cao AH. Trên BC lấy M sao cho BA = BM. Từ M kẻ MN vuông góc với AC tại N. CMR:
a) Tam giác ANH cân
b) BC + AH < AB + AC.
c) 2AC^2 - BC^2 = CH^2 - BH^2
Cho tam giác ABC vuông tại A ( AB < AC ) ; đường cao AH . Trên cạnh BC lấy M sao cho BM = BA . Từ M kẻ MN vuông góc với AC ( N thuộc AC ) . CMR :
a. Tam giác ANH cân
b. BC + AH > AB + AC
c. 2AC2 - BC2 = CH2 - BH2 .
Cho tam giác ABC vuông tại A (AB<AC), AH vuông góc với BC tại H, trên BC lấy M sao cho BA=BM . Từ M kẻ MN vuông góc với AC tại N. Chứng minh
2AC2 - BC2 = CH2 - BH2
cho tam giác ABC cân tại A.kẻ AH vuông góc với BC(H thuộc BC).biếtAB=5 cm,BC=6cm.
a)BH,AH=?
b)kẻ HM vuông góc với AB(M thuộc AB),HN vuông góc với AC(N thuộc AC).cmr:BM=CN.Tam giác AMN là tam giác gì?vì sao?
c)BP vuông góc với AC(P thuộc AC).I là giao điểmBP và HM.cmr tam giác BIH cân.
d)cmr:MN//BC
e) chứng minh AH^2+BM^2=AN^2+BH^2
Cho tam giác ABC cân tại A có AB=5cm, BC=6cm. AH vuông góc với BC
AB= 5cm; BC= 6cm
a) BH=? AH= ?
b) HM vuông góc với AB( M thuộc AB)
HN vuông góc với AC( M thuộc AC) . CMR: BM=CN; tam giác AMN là tam giác gì?
c)Có BP vuông góc AC( P thuộc AC; BP giao HM tại I). CMR: Tam giác BIH cân
d) CMR: MN//BC
e) \(^{AH^2+BM^2=AN^2+BH^2}\)
Cho tam giác ABC vuông ở A (AB <AC).đường cao AH . Trên cạnh BC lấy điểm M sao cho BM = BA. TỪ Mker MN vuông góc với AC (N thuộc AC).CMR
a, tam giác ANH cân
b, BC +AH > AB + AC
c, 2AC2 - BC2 = CH2 -BH2
Cho tam giác ABC vuông tại A.(AB<AC) đường cao AH. Trên cạnh BC lấy M sao cho BM=BA. Từ M kẻ đường thẳng vuông góc với AC(N thuộc AC) c/m:
a) tam giác AHN cân
b) BC+AH>AB+AC
c) 2AC2-BC=CH2-BH2
a) Nối AM
Do BA = BM => △ABM cân tại A
=> BAM = BMA
Ta có: BAM + MAN = 90o => BMA + MAN = 90o
Lại có: MAN + AMN = 90o (△MAN vuông tại N)
=> HMA = NMA
Xét △HMA và △NMA có:
MHA = MNA (= 90o)
AM: chung
HMA = NMA (cmt)
=> △HMA = △NMA (ch-gn)
=> AH = AN (2 cạnh tương ứng)
=> △AHN cân tại A
b) Xét △ABC vuông tại A
=> BC2 = AB2 + AC2 (định lí Pytago)
=> AB2 + AC2 + AH > AB2 + AC2
=> BC + AH > AB + AC
c) Câu này hình như phải là chứng minh 2AC2 - BC2 = CH2 - BH2 chứ nhỉ? Nếu vậy thì cách làm như sau:
Xét △HAC vuông tại H
=> AC2 = HC2 + HA2 (định lí Pytago)
=> HC2 = AC2 - HA2
Xét △BHA vuông tại H
=> AB2 = HB2 + HA2 (định lí Pytago)
=> HB2 = AB2 - HA2
Khi đó:
CH2 - BH2 = AC2 - HA2 - AB2 + HA2
=> CH2 - BH2 = AC2 - AB2
=> CH2 - BH2 = AC2 + AC2 - BC2 (đpcm)
a) Xét ΔACH vuông tại H và ΔBCA vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔACH\(\sim\)ΔBCA(g-g)
\(\Leftrightarrow\dfrac{AC}{BC}=\dfrac{CH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AC^2=CH\cdot CB\)(đpcm)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)
hay AC=8(cm)
Thay AC=8cm và BC=10cm vào biểu thức \(AC^2=CH\cdot BC\), ta được:
\(CH\cdot10=8^2=64\)
hay CH=6,4(cm)
Ta có: CH+BH=BC(H nằm giữa B và C)
nên BH=BC-CH=10-6,4=3,6(cm)
Vậy: BH=3,6cm; CH=6,4cm
c) Xét ΔABH vuông tại H và ΔCAH vuông tại H có
\(\widehat{ABH}=\widehat{CAH}\)(cùng phụ với \(\widehat{BAH}\))
Do đó: ΔABH\(\sim\)ΔCAH(g-g)
\(\Leftrightarrow\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=BH\cdot CH\)(đpcm)