viết công thức tổng quát bất đẳng thứa cói và bunhiacopxki
Viết dạng tổng quát của bất đẳng thức côsi
\(\frac{a_1+a_2+...+a_n}{_n}\ge\sqrt[n]{a_1.a_2......a_n}\)
Bất đẳng thức Bunhiacopxki là gì ?
Bất đẳng thức Bunyakovsky – Wikipedia tiếng Việt
{\displaystyle \left(a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+...+b_{n}^{2}\right)\geq \left(a_{1}b_{1}+a_{2}b_{2}+...+a_{n}b_{n}\right)^{2}}
Dấu "=" xảy ra khi và chỉ khi {\displaystyle {\frac {a_{1}}{b_{1}}}={\frac {a_{2}}{b_{2}}}=...={\frac {a_{n}}{b_{n}}}} với quy ước nếu một số {\displaystyle b_{i}} nào đó (i = 1, 2, 3,..., n) bằng 0 thì {\displaystyle a_{i}}tương ứng bằng 0.Hệ quả của bất đẳng thức Bunyakovsky ta có: {\displaystyle \left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\geq \left(4abcd\right)}ngoài ra có thể hiểu hơn ở Hiểu rõ hơn về bất đẳng thức Bunhiacopxki - Toán cấp 3
Bất đẳng thức Cauchy - Schwars
Bất đẳng thức AM - GM
Bất đẳng thức Bunhiacopxki
Bất đẳng thức Mincopxki
Cho tớ công thức của các BĐT trên , giúp với@Ace Legona
C-S với Bunhia là 1 và là 1 trg hợp của Holder dạng 2 số \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
AM-GM ng` việt gọi là cô si dạng 2 số \(a^2+b^2\ge2ab\)
Mincopski dạng 2 số \(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a+x\right)^2+\left(b+y\right)^2}\)
* BĐT Cauchy - Schwars = BĐT Bunhiacopxki
- Thông thường :
( a2 + b2 )(c2 + d2 ) \(\ge\left(ac+bd\right)^2\)
Dấu "=" xảy ra tại : \(\dfrac{a}{c}=\dfrac{b}{d}\)
- Tổng quát với các bộ số : a1 , a2 , a3 , ... , an và : b1 , b2 , ... , bn
(a12 + a22 + ... + an2)(b12 + b22 + ... + bn2 ) \(\ge\left(a_1b_1+a_2b_2+...+a_nb_n\right)\)
Dấu "=" xảy ra tại : \(\dfrac{a_1}{b_1}=\dfrac{a_2}{b_2}=...=\dfrac{a_n}{b_n}\)
* BĐT AM-GM
- trung bình nhân (2 số)
với a,b \(\ge0\) , ta luôn có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\) . Dấu "=" xảy ra tại a=b
- Trung bình nhân ( n số )
Với x1 , x1 , x3 ,..., xn \(\ge0\)
Ta luôn có : \(\dfrac{x_1+x_2+...+x_n}{n}\ge\sqrt[n]{x_1x_2.....x_n}\)
Dấu "=" xảy ra khi x1 = x2 =...=xn
-Trung bình hệ số :
Với các bộ số : x1 , x1 , x3 ,..., xn \(\ge0\)và a1, a2 , a3 ,... , an ( a1 , a2 ,..., an) là c1ác hệ số
Ta có : \(\dfrac{a_1x_1+a_2x_2+...+a_nx_n}{a}\ge\sqrt[a]{x_1^{a_1}.x_2^{a_2}.....x_n^{a_n}}\)
Dấu "=" xảy ra khi x1 = x2 = xn
=================
Cái mincopxki t ko biết , ngoài ra còng có BĐT Cauchy - dạng engel => lên googl seach có
Chúc mọi người năm mứi vui vẻ :3
C/m bất đẳng thức Bunhiacopxki
BĐT Bunhiacopxki:
Áp dụng cho 6 số(1,1,1,a,b,c)
\(\left(1^2+1^2+1^2\right).\left(a^2+b^2+c^2\right)\ge\left(1a+1b+1c\right)^2\)
Chứng minh:
\(\left(ax+by\right)^2\le\left(a^2+b^2\right).\left(x^2+y^2\right)\)
\(\Leftrightarrow a^2x^2+2axby+b^2y^2\le a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(\Leftrightarrow2axby\le a^2y^2+b^2x^2\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)( đpcm )
Công thức phân tử chất đầu tiên của một dãy đồng đẳng là C3H4O. Công thức tổng quát của dãy đồng đẳng trên là
A. C3nH4nO (n≥1).
B. CnHn+1O (n ≥3).
C. CnH3n-5O (n≥3).
D. CnH2n-2O (n ≥ 3).
Công thức phân tử chất đầu tiên của một dãy đồng đẳng là C3H4O. Công thức tổng quát của dãy đồng đẳng trên là
A. C3nH4nO (n≥1).
B. CnHn+1O (n ≥3).
C. CnH3n-5O (n≥3).
D. CnH2n-2O (n ≥ 3).
Công thức phân tử chất đầu tiên của một dãy đồng đẳng là C3H4O. Công thức tổng quát của dãy đồng đẳng trên là
A. C3nH4nO (n≥1).
B. CnHn+1O (n ≥3).
C. CnH3n-5O (n≥3).
D. CnH2n-2O (n ≥ 3).
chứng minh bất đẳng thức bunhiacopxki nếu (a^2+b^2)(x^2+y^2)=(ax+by)^2 thì ax=by
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
điền số thích hợp vào các đẳng thức sau
căn bậc 2 của 1 =.........
căn bậc 2 của 1+2+1=.............
căn bậc 2 của 1+2+3+2+1=..........
hãy viết tiếp 3 đẳng thức nửa vào đẳng thức trên
hãy viết công thức tổng quát