Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
letienluc
Xem chi tiết
Hoàng Nữ Linh Đan
Xem chi tiết
Trương Anh Tuấn
Xem chi tiết
Trần Minh An
Xem chi tiết
Hoàng Hà Nhi
7 tháng 2 2017 lúc 20:37

mai tau giải cho dừ viết lâu lắm. Đúng là phải thưởng.

Doraemon
8 tháng 2 2017 lúc 0:51

1.3.5. ... .99=51/2.52/2. ... .100/2
nhân cả hai vế với 1.2...50.2^50, ta được
*vế 1
1.3.5. ... .99.1.2...50.2^50=1.3.5...99.2.2.2..2..1.2...50
=1.3.5...99.1.2.2.2.2.3.2.4.....2.50
1.3.....99.2.4..10=1.2.3.4.5...100 (1)
*vế 2
51/2.52/2. ... .100/2^50.1.2.3...50=51/2.52/2. ... .100/2.2.2...1.2.3...50
=(51/2).2.(52/2).2 ... .(100/2).2.....1.2.3...50
rút gọn ta sẽ đươc51.52.53...100.1.2.3...50(2)
từ (1) và (2)=>1.3.5. ... .99=51/2.52/2. ... .100/2

Lê Hà Anh
2 tháng 4 2017 lúc 21:44

ngu như cứt

Nguyễn Hà Thảo Vy
Xem chi tiết
Nguyen Van Huong
Xem chi tiết
Nguyễn Tuấn Minh
7 tháng 4 2017 lúc 11:59

\(1.3.5....99=\frac{1.2.3.4....99.100}{2.4.6...100}=\frac{\left(1.2.3....50\right).\left(51.52.53...100\right)}{2^{50}.\left(1.2.3...50\right)}\)

\(=\frac{51.52.53....100}{2^{50}}=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}......\frac{100}{2}\)

Đinh Đức Hùng
7 tháng 4 2017 lúc 12:01

Ta có :

\(1.3.5.....99=\frac{1.2.3.4.....99.100}{2.4.6......100}\)

\(=\frac{1.2.3......99.100}{1.2.2.2.2.3......2.50}\)

\(=\frac{1.2.3.4......99.100}{2^{50}.1.2.3......50}\)

\(=\frac{51.52.....100}{2^{50}}\)

\(=\frac{51}{2}.\frac{52}{2}...........\frac{100}{2}\) (ĐPCM)

Top 10 Gunny
Xem chi tiết
Dũng Lê Trí
18 tháng 3 2018 lúc 20:43

Đặt \(S=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{199}-\frac{1}{200}\)

\(S=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(S=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Ta có đpcm

Top 10 Gunny
18 tháng 3 2018 lúc 20:48

Bạn Trí làm sai rồi!

Đề bài không yêu cầu chứng minh như bạn

Top 10 Gunny
18 tháng 3 2018 lúc 20:53

ai trả lời đc câu b ko?

trananhkiet
Xem chi tiết
Quỳnh Giang Bùi
Xem chi tiết