\(\frac{1}{2}-\hept{\begin{cases}2\\3\end{cases}}.x-\frac{1}{3}=\frac{2}{3}\)
a) \(\hept{\begin{cases}\frac{x+2}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}\)
b) \(\hept{\begin{cases}\left(x^2-2x\right)^2+4\left(x^2-2x\right)\\\frac{1}{x}+\frac{1}{y-1}=\frac{3}{2}\end{cases}}\)
c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\\\frac{3}{x}-\frac{4}{y}=-1\end{cases}}\)
a) \(\Leftrightarrow\hept{\begin{cases}\frac{x+1+1}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}\Leftrightarrow\hept{\begin{cases}1+\frac{1}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}}\)
Đặt \(a=\frac{1}{x+1};b=\frac{1}{y-2}\)
\(\Leftrightarrow\hept{\begin{cases}1+a+2b=6\\5a-b=3\end{cases}\Leftrightarrow\hept{\begin{cases}a+2b=5\\5a-b=3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+1}=1\\\frac{1}{y-2}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=\frac{5}{2}\end{cases}}}\)
b) ĐK: \(\hept{\begin{cases}x\ne0\\y\ne1\end{cases}}\)
\(PT\left(1\right)\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+4\right)=0\Leftrightarrow x\left(x-2\right)\left(x^2-2x+4\right)=0\Leftrightarrow x=0\)(loại)
, x=2 , x2-2x+4=0 (3)
pt(3) vô nghiệm vì \(\Delta'=1-4=-3< 0\)
Thay x=2 vào pt(2) ta được \(\frac{1}{2}+\frac{1}{y-2}=\frac{3}{2}\Leftrightarrow\frac{1}{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow y=2\left(tm\text{đ}k\right)\)
Vậy nghiệm của hpt là: (x;y)=(2;2)
Giải hệ phương trình
\(\hept{\begin{cases}3x-4y=11\\5x-6y=20\end{cases}}\)
\(\hept{\begin{cases}\frac{2}{x}-\frac{3}{y}=1\\3x-3y=-2xy\end{cases}}\)
\(\hept{\begin{cases}2x-y=-3xy\\\frac{1}{x}+\frac{6}{y}=-1\end{cases}}\)
\(\hept{\begin{cases}\frac{3}{x+1}+\frac{1}{y+x-1}=2\\\frac{2}{x+1}-\frac{3}{y+x-1}=5\end{cases}}\)
b) Gọi 3 số cần tìm lần lượt là: x,y,z. Vì x,y,z tỉ lệ nghịch với 2;3;5 nên
\(2x=3y=5z\)
\(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\\x+y+z=310\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{310}{\frac{31}{30}}=300\\x+y+z=310\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=300\\\frac{y}{\frac{1}{3}}=300\\\frac{z}{\frac{1}{5}}=300\end{cases}}\)
\(\hept{\begin{cases}x=\frac{1}{2}.300\\y=\frac{1}{3}.300\\z=\frac{1}{5}.300\end{cases}}\)
\(\hept{\begin{cases}x=150\\y=100\\z=60\end{cases}}\)
Gởi bn Trân
a. Nếu x \(\ge\)0 suy ra x =1 ( thõa mãn)
Nếu x < 0 suy ra x = -3 ( thõa mãn)
b. \(\frac{1}{y}=\frac{x}{6}-\frac{1}{2}=\frac{x-3}{6}\Rightarrow\hept{\begin{cases}y=1\\x-3=6\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=-1\\x-3=-6\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=2\\x-3=3\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=-3\\x-3=-2\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=6\\x-3=1\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=-6\\x-3=-1\end{cases}}\)
;hoặc \(\hept{\begin{cases}y=-2\\x-3=-3\end{cases}}\)
; hoặc \(\hept{\begin{cases}y=3\\x-3=2\end{cases}}\)
Từ đó ta có các cặp (x;y) là (9;1); (-3,-1); (6,2); (0,2); (5,3); (1,-3); (4,6); (2,-6)
c. Từ 2x = 3y và 5x = 7z biến đổi về \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{89}=\frac{5z}{50}=\frac{3x-7y+5z}{63-89+50}=\frac{30}{15}=\frac{2}{1}=2\)
\(\rightarrow\)x=42; y=28; z=20
Đề câu trả lời trên là:
Tìm x, y, z thuộc Z, biết
a) |x| + |-x|= 3-x
b) x6 −1y =12
c) 2x = 3y; 5x = 7z và 3x - 7y +5z = 30
a)\(\hept{\begin{cases}|x-2|+2|y-1|=9\\x+|y-1|=-1\end{cases}}\)
b)\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)
c)\(\hept{\begin{cases}x^2\\x^3-y^3=35\end{cases}+xy+y^2=7}\)
d)\(\hept{\begin{cases}\left(x+y\right)^2\\x-y-3=0\end{cases}-5\left(x+y\right)+4=0}\)
e)\(\hept{\begin{cases}x^2+\frac{4}{y^2}=4\\x-\frac{2}{y}-\frac{4x}{y}=-2\end{cases}}\)
giúp mình với ạ , mình đang cần gấp !!!
a,\(\hept{\begin{cases}3\left(x+1\right)+2\left(x+2y\right)=4\\4\left(x+1\right)-\left(x+2y\right)=9\end{cases}}\)
b, \(\hept{\begin{cases}x+\frac{1}{y}=\frac{-1}{2}\\2x-\frac{3}{y}=\frac{-7}{2}\end{cases}}\)
c,\(\hept{\begin{cases}\frac{x+2}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}\)
a) \(\hept{\begin{cases}3\left(x+1\right)+2\left(x+2y\right)=4\\4\left(x+1\right)-\left(x+2y\right)=9\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(x+1\right)+2\left(x+2y\right)=4\\8\left(x+1\right)-2\left(x+2y\right)=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11\left(x+1\right)=22\\3\left(x+1\right)+2\left(x+2y\right)=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\4y+8=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)
b) ĐK : y khác 0
\(\hept{\begin{cases}x+\frac{1}{y}=-\frac{1}{2}\\2x-\frac{3}{y}=-\frac{7}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}3x+\frac{3}{y}=-\frac{3}{2}\\2x-\frac{3}{y}=-\frac{7}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}5x=-5\\3x+\frac{3}{y}=-\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\-3+\frac{3}{y}=-\frac{3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\\frac{3}{y}=\frac{3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\left(tm\right)\end{cases}}\)
c) ĐK : x khác -1 ; y khác 2
\(\hept{\begin{cases}\frac{x+2}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{x+1}+\frac{2}{y-2}=5\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}\). Đặt \(\hept{\begin{cases}\frac{1}{x+1}=a\\\frac{1}{y-2}=b\end{cases}\left(a,b\ne0\right)}\)
\(\Leftrightarrow\hept{\begin{cases}a+2b=6\\5a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a+2b=5\\10a-2b=6\end{cases}}\Leftrightarrow\hept{\begin{cases}11a=11\\a+2b=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}\left(tm\right)}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{x+1}=1\\\frac{1}{y-2}=2\end{cases}}\Rightarrow\hept{\begin{cases}x+1=1\\y-2=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=\frac{5}{2}\end{cases}\left(tm\right)}\)
1)giải các hệ PT sau bằng pp cộng đại số:
a)\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)
b)\(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\)
c)\(\hept{\begin{cases}\frac{2}{3}x+\frac{4}{3}y=1\\\frac{1}{2}x-\frac{3}{4}y=1\end{cases}}\)
a.\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\2\cdot\frac{5}{8}+4y=3\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)
a) \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\\frac{5}{4}+4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{5}{8};\frac{7}{16}\right)\)
b) \(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}8x-6y=2\\-3x+6y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x=5\\-3x+6y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\-3+6y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)
a, \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)
Giải phương trình
\(\hept{\begin{cases}\frac{1}{x}+2\left(x+y\right)=3\\3x\left(x+y\right)-x=2\end{cases}}\)\(\hept{\begin{cases}\frac{x+y}{x-y}+\frac{2x}{y+1}=3\\\frac{x+y}{2\left(x-y\right)}-\frac{3x}{y+1}=\frac{-1}{2}\end{cases}}\)\(\hept{\begin{cases}2x+3y=xy+5\\\frac{1}{x}+\frac{1}{y+1}=1\end{cases}}\)1.
\(ĐK:x\ne0\)
HPT
\(\Leftrightarrow\hept{\begin{cases}2x\left(x+y\right)-3x+1=0\\3x\left(x+y\right)-x-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x\left(x+y\right)-\frac{9}{2}x+\frac{3}{2}=0\left(1\right)\\3x\left(x+y\right)-x-2=0\left(2\right)\end{cases}}\)
\(\left(1\right)-\left(2\right)\Leftrightarrow\frac{7}{2}x=\frac{7}{2}\)
\(\Leftrightarrow x=1\left(3\right)\)
\(\left(1\right),\left(3\right)\Rightarrow3\left(1+y\right)-3=0\)
\(\Leftrightarrow y=0\)
Vay nghiem cua HPT la \(\left(1;0\right)\)
giải hệ phương trình:
1) \(\hept{\begin{cases}2\left(x+y\right)+3\left(x+y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{cases}}\)
2)\(\hept{\begin{cases}\left(2x-3\right)\left(2y+4\right)=4x\left(y-3\right)+54\\\left(x+1\right)\left(3y-3\right)=3y\left(x+1\right)-12_{ }\end{cases}}\)
3) \(\hept{\begin{cases}\frac{2y-5x}{3}+5=\frac{y+27}{4}-2x\\\frac{x+1}{3}+y=\frac{6y-5x}{7}\end{cases}}\)
4)\(\hept{\begin{cases}\frac{1}{2}\left(x+2\right)\left(y+3\right)-\frac{1}{2}xy=50\\\frac{1}{2}xy-\frac{1}{2}\left(x-2\right)\left(y-2\right)=32\end{cases}}\)
5)\(\hept{\begin{cases}\left(x+20\right)\left(y-1\right)=xy\\\left(x-10\right)\left(y+1\right)=xy\end{cases}}\)
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
2) Từ hệ ta có \(\hept{\begin{cases}20x-6y=66\\-3x=-9\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
GIẢI hpt:
\(a,\hept{\begin{cases}\frac{1}{\sqrt{x}}+\sqrt{2.\frac{1}{y}}=2\\\frac{1}{\sqrt{y}}+\sqrt{2.\frac{1}{x}}=2\end{cases}}\)
\(b,\hept{\begin{cases}x+y+2=4\\2xy-x^2=16\end{cases}}\)
\(c,\hept{\begin{cases}x\left(x-1\right)\left(x-2y\right)=0\\\frac{1}{x}-\frac{1}{y}=\frac{4}{3}\end{cases}}\)