\(ChoA=\frac{1}{100}+\frac{1}{101}+...+\frac{1}{199}\)
Chứng minh rằng: \(A>\frac{5}{8}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chứng minh rằng
\(A=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}< 1\)1
Cho A=\(\frac{1}{100^2}+\frac{1}{101^2}+...+\frac{1}{199^2}\)
Chứng minh:
\(\frac{1}{100}< B< \frac{1}{99}\)
A= 1/100x100+1/101x101+..........+1/199x199
Vì 1/100x100<99x100
1/101x101<100x101
...........
1/199x199 < 1/198x199
=) A< 1/99x100+1/100x101+...+1/198x199
A<1/99-1/100+1/100-1/101+.....+1/198-199
A<100/19701=0,0050....
Mà 1/100=0,01
=> A<1/100
K đúng nhé
Chứng minh
A= \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{199}+\frac{1}{100}< 1\) \(1\)
Giải
\(A=\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}\)
\(\Rightarrow A< \frac{1}{100}+\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
\(\Rightarrow A< \frac{100}{100}=1\)
Vậy A < 1 (đpcm)
Chứng tỏ rằng: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}\)
Chứng minh rằng
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Lời giải:
Ta có:
\(\text{VT}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\text{VP}\)
Ta có đpcm.
Chứng minh rằng:
a) \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)=\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
b) \(\frac{51}{2}+\frac{52}{2}+...+\frac{100}{2}=1.3.5...99\)
Đặt \(S=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{199}-\frac{1}{200}\)
\(S=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(S=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Ta có đpcm
Bạn Trí làm sai rồi!
Đề bài không yêu cầu chứng minh như bạn
Chứng minh rằng :
\(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}<1\)
Gọi A=1/101+...+1/200
=>A có số thừa số là (200-101):1+1=100 (thừa số)
=>1/101+...+1/200 <1/100+1/100+...+1/100 (100 ts 1/100)
=>1/101+...+1/200 <1(đpcm)
Chứng minh rằng
a)\(\frac{5}{8}<\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}<\frac{3}{4}\)
b)\(\frac{1}{4}+\frac{1}{6}+\frac{1}{16}+...+\frac{1}{10000}<\frac{3}{4}\)
c)(\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{199}{200}\))2 <\(\frac{1}{201}\)
d)\(50<1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}...+\frac{1}{2^{100}-1}<100\)
ChoA:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\).Chứng minh rằng A < 3/4