Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lâm Tuệ Minh
Xem chi tiết
Capheny Bản Quyền
25 tháng 8 2020 lúc 22:38

a) 

\(\sqrt{18-6\sqrt{6}+3}\)        

\(\sqrt{\left(3\sqrt{2}\right)^2-2\cdot3\sqrt{2}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)       

\(\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)       

\(|3\sqrt{2}-\sqrt{3}|\)   

\(3\sqrt{2}-\sqrt{3}\)   

b) 

\(\sqrt{\frac{7}{2}-\sqrt{7}+\frac{1}{2}}\)   

\(\sqrt{\left(\sqrt{\frac{7}{2}}\right)^2+2\cdot\sqrt{\frac{7}{2}}\cdot\sqrt{\frac{1}{2}}+\left(\sqrt{\frac{1}{2}}\right)^2}\)    

\(\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}\right)^2}\)     

\(|\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}|\) 

\(\sqrt{\frac{7}{2}}+\sqrt{\frac{1}{2}}\)        

c) 

\(\sqrt{3+2\sqrt{3}+1}\)  

\(\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot1+1^2}\)    

\(\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\) 

d) 

Đặt t = \(\sqrt{x-1}\left(ĐK:t\ge0\right)\)   

\(\sqrt{t^2+1-2t}\)       

\(\sqrt{\left(t+1\right)^2}\)   

\(=t+1\)      

\(\sqrt{x-1}+1\)                     

Khách vãng lai đã xóa
Blackcoffee
25 tháng 8 2020 lúc 23:25

\(\sqrt{21-6\sqrt{6}}=\sqrt{18-2\sqrt{9}\sqrt{6}+3}=\sqrt{\left(\sqrt{18}\right)^2-2\sqrt{18}\sqrt{3}+\left(\sqrt{3}\right)^2}\)

                                \(=\sqrt{\left(\sqrt{18}+\sqrt{3}\right)^2}=\sqrt{18}+\sqrt{3}=\sqrt{3}+3\sqrt{2}\)

\(\sqrt{4-\sqrt{7}}=\frac{\sqrt{2}\sqrt{4-\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{7-2\sqrt{7}+1}}{\sqrt{2}}\)

                           \(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}-1}{\sqrt{2}}=\frac{\sqrt{14}-\sqrt{2}}{2}\)

\(\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

Với \(x\ge1\)thì \(\sqrt{x-2\sqrt{x-1}}=\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}\)

                                                                  \(=\sqrt{\left(\sqrt{x-1}\right)^2-2\sqrt{x-1}\sqrt{1}+\left(\sqrt{1}\right)^2}\)

                                                                  \(=\sqrt{\left(\sqrt{x-1}-1\right)^2}=\sqrt{x-1}-1\)

T đã tốn mấy phút cuộc đời viết lời giải cho bạn r, tiếc j mấy giây mà bấm k cho t ik =))

Khách vãng lai đã xóa
megu kuma
Xem chi tiết
Yusaku Kudo
20 tháng 8 2019 lúc 22:05

a/A\(=\frac{x+2}{x-\sqrt{x}-2}-\frac{2\sqrt{x}}{\sqrt{x}+1}-\frac{1-\sqrt{x}}{\sqrt{x}-2}\)
\(=\frac{x+2-2\sqrt{x}\left(\sqrt{x}-2\right)-\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2-2x+4\sqrt{x}-1+x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{4\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
Thay x=16 vào A ta có: A\(=\frac{3}{2}\)
b/ B= \(1-\frac{\sqrt{x}-3}{\sqrt{x}-2}\)
\(\frac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}=\frac{1}{\sqrt{x}-2}\)
=>C=\(\frac{4\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}:\frac{1}{\sqrt{x}-2}\)=\(\frac{4\sqrt{x}-1}{\sqrt{x}+1}\)
c/Để C thuộc Z thì \(\frac{4\sqrt{x}-1}{\sqrt{x}+1}\) thuộc Z
C\(=\text{​​}\frac{4\sqrt{x}-1}{\sqrt{x}+1}=\frac{4\sqrt{x}+4}{\sqrt{x}+1}-\frac{5}{\sqrt{x}+1}=4-\frac{5}{\sqrt{x}+1}\)
=> \(5⋮\left(\sqrt{x}+1\right) \Leftrightarrow\sqrt{x}+1\in\left\{-5;-1;1;5\right\}\)
Nhận xét: \(\sqrt{x}+1\ge1\)
\(\Rightarrow\sqrt{x}+1\in\left\{1;5\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;4\right\} \Leftrightarrow x\in\left\{0;16\right\}\)
Vậy \(x\in\left\{0;16\right\}\) thì C thuộc Z
Chúc bạn học tốt!

Lan Anh Hoa
Xem chi tiết
hoàng mỹ trung
Xem chi tiết
Phạm Mạnh Kiên
Xem chi tiết
nguyen phuong thao
Xem chi tiết
゚°☆Morgana ☆°゚ ( TCNTT )
11 tháng 6 2019 lúc 15:19

em ko bieets hu hu

T.Ps
11 tháng 6 2019 lúc 15:41

#)Giải :

a) \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}-1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\frac{x-1}{2\sqrt{x}}\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{x-1}{2\sqrt{x}}.\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{x-1}\)

\(=\frac{-4}{2\sqrt{x}}=-2\sqrt{x}\)

T.Ps
11 tháng 6 2019 lúc 15:44

#)Giải :

b) Để \(A>-6\Leftrightarrow-2\sqrt{x}>-6\)

\(\Leftrightarrow\sqrt{x}< 3\)

\(\Leftrightarrow x< 9\)

Kết hợp với đkxđ => 0 < x < 9

Phạm Mạnh Kiên
Xem chi tiết
Trương Huy Hoàng
29 tháng 7 2021 lúc 16:03

Bài 4: 

a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))

\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3

\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)

\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)

\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)

\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)

\(\Leftrightarrow\) \(2x^2+7x+3=0\)

\(\Delta=7^2-4.2.3=25\)\(\sqrt{\Delta}=5\)

Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:

\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)

Vậy ...

Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được

Bài 5: 

a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)

\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)

\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)

\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)

\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)

Vậy ...

Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\)\(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!

VD1:

a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)

\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)

\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)

Vậy ...

Phần b tương tự nha

c, \(\sqrt{3}x^2-\sqrt{12}=0\)

\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)

\(\Leftrightarrow\) \(x^2=2\)

\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)

Vậy ...

d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)

\(\Leftrightarrow\) \(x-1=5\)

\(\Leftrightarrow\) \(x=6\)

Vậy ...

VD2: 

Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)

b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))

\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(x^2=3\)

\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)

Vậy ...

c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))

\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x^2-4x=0\)

\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)

nguyễn viết hạ long
Xem chi tiết
Phạm Mạnh Kiên
Xem chi tiết
Hải Đức
26 tháng 7 2021 lúc 16:56

Bài 2 

b, `\sqrt{3x^2}=x+2`          ĐKXĐ : `x>=0`

`=>(\sqrt{3x^2})^2=(x+2)^2`

`=>3x^2=x^2+4x+4`

`=>3x^2-x^2-4x-4=0`

`=>2x^2-4x-4=0`

`=>x^2-2x-2=0`

`=>(x^2-2x+1)-3=0`

`=>(x-1)^2=3`

`=>(x-1)^2=(\pm \sqrt{3})^2`

`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$

`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$

Vậy `S={1+\sqrt{3};1-\sqrt{3}}`

Hải Đức
26 tháng 7 2021 lúc 17:12

Bài 1 

a, `3x-7\sqrt{x}+4=0`            ĐKXĐ : `x>=0`

`<=>3x-3\sqrt{x}-4\sqrt{x}+4=0`

`<=>3\sqrt{x}(\sqrt{x}-1)-4(\sqrt{x}-1)=0`

`<=>(3\sqrt{x}-4)(\sqrt{x}-1)=0`

TH1 :

`3\sqrt{x}-4=0`

`<=>\sqrt{x}=4/3`

`<=>x=16/9` ( tm )

TH2

`\sqrt{x}-1=0`

`<=>\sqrt{x}=1` (tm)

Vậy `S={16/9;1}`

b, `1/2\sqrt{x-1}-9/2\sqrt{x-1}+3\sqrt{x-1}=-17`     ĐKXĐ : `x>=1`

`<=>(1/2-9/2+3)\sqrt{x-1}=-17`

`<=>-\sqrt{x-1}=-17`

`<=>\sqrt{x-1}=17`

`<=>x-1=289`

`<=>x=290` ( tm )

Vậy `S={290}`

 

Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 22:44

Bài 1: 

a) Ta có: \(3x-7\sqrt{x}+4=0\)

\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)

b) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}\cdot\left(-1\right)=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290