Cho 10a^2= 10b^2-c^2
CMR ( 7a-3b-2c)(7a+3b+2c) = (3a-7b)^2
Cho 10a^2 = 10b^2 + c^2
CMR: ( 7a - 3b + 2c )( 7a - 3b - 2c ) - (3a - 7b )^2
b) VT = (7a-3b)2 - 4c2 = 49a2 - 42ab + 9b2 - 4c2
mà 10a2 = 10b2 + c2 nên c2 = 10a2 - 10b2
nên VT = 49a2 - 42ab + 9b2 - 4 (10a2 - 10b2)
=49a2 - 42ab + 9b2 - 40a2 + 40b2
=9d2 - 42ab + 49b2 = (3a - 7b)2 = VT
Cho 10a^2 = 10b^2 + c^2
CMR: ( 7a - 3b + 2c )( 7a - 3b - 2c ) - (3a - 7b )^2
cho: 10a^2=10b^2+c
tinh (7a-3b+2c).(7a-3b-2c)=(3a-7b)^2
Cho 10a^2=10b^2+c^2. Chứng minh rằng (7a-3b+2c)(7a-3b-2c)=(3a-7b)^2
b/ VT = (7a – 3b)2 – 4c2 = 49a2- 42ab + 9b2 – 4c2
mà 10a2 = 10b2 + c2 nên c2 = 10a2 – 10b2
nên VT = 49a2 – 42ab + 9b2 – 4(10a2 – 10b2)
= 49a2 – 42ab + 9b2 – 40a2 + 40b2
= 9ª2 – 42ab + 49b2 = (3a – 7b)2 = VP
Cho 10a^2=10b^2+c^2. Chứng minh rằng (7a-3b+2c)(7a-3b-2c)=(3a+b)^2
b/ VT = (7a – 3b)2 – 4c2 = 49a2- 42ab + 9b2 – 4c2
mà 10a2 = 10b2 + c2 nên c2 = 10a2 – 10b2
nên VT = 49a2 – 42ab + 9b2 – 4(10a2 – 10b2)
= 49a2 – 42ab + 9b2 – 40a2 + 40b2
= 9ª2 – 42ab + 49b2 = (3a – 7b)2 = VP
cho \(10a^2\)=\(10b^2\)+ \(c^2\)
chứng minh rằng : (7a - 3ab + 2c ) (7a - 3b - 2c ) = (3a - 7b )\(^2\)
Đề sai sửa lại là
(7a - 3b + 2c ) (7a - 3b - 2c ) = (3a - 7b )2
Ta có VT = ( 7a - 3b)2 - 4c2 = (3a - 7b )2 + 40a2 - 40b2 - 4c2 = (3a - 7b )2 = VP
Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\dfrac{3a^3+7b^3}{2a+3b}+\dfrac{3b^3+7c^3}{2b+3c}+\dfrac{3c^3+7a^3}{2c+3a}\ge3\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)
\(BDT\Leftrightarrow2a^4b+2b^4c+2c^4a+3ab^4+3bc^4+3ca^4\ge5a^2b^2c+5a^2bc^2+5ab^2c^2\)
Ta chứng minh được \(ab^4+bc^4+ca^4\ge a^2b^2c+a^2bc^2+ab^2c^2\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
\(VT=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=VP\)
Vậy ta cần chứng minh \(2a^4b+2b^4c+2c^4a+2ab^4+2bc^4+2ca^4\ge4a^2b^2c+4a^2bc^2+4ab^2c^2\)
\(\Leftrightarrow\sum_{cyc}\left(2c^3+bc^2-b^2c+ac^2-a^2c+3ab^2+3a^2b\right)\left(a-b\right)^2\ge0\)
Dấu "=" xảy ra khi \(a=b=c\)
Em có cách này tuy nhiên không chắc,do em mới học sos thôi,mong mọi người giúp đỡ ạ!
BĐT \(\Leftrightarrow\Sigma_{cyc}\left(\frac{7b^3+3ab^2-7a^2b-3a^3}{2a+3b}\right)\ge0\)\(\Leftrightarrow\Sigma_{cyc}\left(\frac{7b\left(b^2-a^2\right)+3a\left(b^2-a^2\right)}{2a+3b}\right)\ge0\)
\(\Leftrightarrow\Sigma_{cyc}\left(\frac{\left(b^2-a^2\right)\left(7b+3a\right)}{2a+3b}-2\left(b^2-a^2\right)\right)\ge0\) (ta không cần cộng thêm \(\Sigma_{cyc}2\left(b^2-a^2\right)\) vì \(\Sigma_{cyc}2\left(b^2-a^2\right)=\Sigma_{cyc}2\left(b^2-a^2+c^2-b^2+a^2-c^2\right)=0\))
\(\Leftrightarrow\Sigma_{cyc}\left(b^2-a^2\right)\left(\frac{7b+3a-4a-6b}{2a+3b}\right)\ge0\)\(\Leftrightarrow\Sigma_{cyc}\frac{\left(a+b\right)\left(a-b\right)^2}{2a+3b}\ge0\)
P/s: Hình như có gì đó sai sai ạ,mong mọi người check hộ em!Em cảm ơn nhiều ạ!
Thu gọn biểu thức sau
a) 3a + 4b - 5c - 2a - 3b + 5c
b) 7a + 3b - 4c - 3a+ 2b - 2c - 4a + b - 2c
a) 3a + 4b - 5c - 2a - 3b + 5c
= ( 3a - 2a ) + ( 4b - 3b ) - ( 5c - 5c )
= a + b
b) 7a + 3b - 4c - 3a + 2b - 2c - 4a + b - 2c
= ( 7a - 3a - 4a ) + ( 3b + 2b + b ) - ( 4c + 2c + 2c )
= 6b - 8c
a) 3a + 4b - 5c - 2a - 3b + 5c
= (3a - 2a) + (4b - 3b) - (5c - 5c)
= a + b - 0 = a + b
b) 7a + 3b - 4c - 3a + 2b - 2c - 4a + b - 2c
= (7a - 3a - 4a) + (3b + 2b + b) - ( 4c + 2c + 2c)
= 0 + 6b - 8c = 6b - 8c
a)
3a + 4b - 5c - 2a - 3b + 5c
=( 3a - 2a ) + ( 4b - 3b ) + ( -5c + 5c )
= a + b
b)
7a + 3b - 4c - 3a + 2b - 2c - 4a + b - 2c
=( 7a - 3a - 4a ) + ( 3b + 2b + b ) + ( -4c - 2c - 2c )
= 6b + (-8c)
BÀI 1: 1D - 2A - 3C - 4D - 5B - 6C - 7A
BÀI 2: 1B- 2A- 3B - 4B - 5D - 6C - 7A
BÀI 3; 1D - 2C - 3D- 4C - 5B - 6D - 7D - 8D - 9A - 10A - 11D - 12A
BÀI 4: 1D - 2A - 3C - 4A - 5B - 6D - 7A - 8B - 9B - 10A
BÀI 5: 1A - 2D - 3D - 4C - 5B - 6D - 7A