CMR:
1-1/2+1/3-1/4+...+1/19-1/20=1/11+1/12+1/13+...+1/19+1/20
CMR \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}\)
a, 13/19 + 1 - 15/19 - 4/19
b, 3/5 +6/11 +7/13 +2/5 +16/11 +19/13
c, 1/3 +1/6 + 1/12 +1/24 +1/48
d, 1/2 +1/6 +1/12 +1/20 +1/30 +1/42
CMR
1-1/2+1/3-1/4+1/5-1/6+...+1/19-1/20=1/11+1/12+...+1/21
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{19}\right)\)\(-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{19}+\frac{1}{20}\right)\)\(-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
\(=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)
CMR
1-1/2+1/3-1/4+1/5-1/6+...+1/19-1/20=1/11+1/12+...+1/21
CMR
1-1/2+1/3-1/4+1/5-1/6+...+1/19-1/20=1/11+1/12+...+1/21
CMR
1-1/2+1/3-1/4+1/5-1/6+...+1/19-1/20=1/11+1/12+...+1/21
CMR:
1-\(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}...+\frac{1}{19}-\frac{1}{20}=\frac{1}{11}+\frac{1}{13}+...+\frac{1}{20}\)
Ta có: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{19}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{19}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)=\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}+\frac{1}{20}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)=\)
= 1/11 + 1/12 +1/13+...+1/20 (đpcm)
Chứng tỏ rằng: \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}\)
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{20}-\dfrac{1}{20}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{20}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{10}\right)\)
\(=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}\) (đpcm)