(8x-7)(8x-5)(2x-1)(4x-1)=9
Giải PT
Giải pt sau:
a, 3 - 4x( 25 - 2x ) - 8x2 + x - 300
b, 2( 1 -3x )/5 - 2+ 3x/10 = 7- 3( x + 1)/4
c, 5x + 2 /6 - 8x - 1/3 = 4x + 2/5 - 5
d, 3x + 2/3 - 3x + 1/6 = 2x + 5/3
Help me
a. \(3-4x\left(25-2x\right)-8x^2+x-300=0\)
\(\Leftrightarrow3-100x+8x^2-8x^2+x-300=0\)
\(\Leftrightarrow-297-99x=0\)
\(\Leftrightarrow x=3\)
Vậy \(n_0\) của PT là: x=3
b. \(\Leftrightarrow\frac{\left(2-6x\right)}{5}-2+\frac{3x}{10}=7-\frac{3x+3}{4}\)
\(\Leftrightarrow\frac{\left(4-12x\right)}{5}-\frac{20}{10}+\frac{3x}{10}=\frac{\left(28-3x-3\right)}{4}\)
\(\Leftrightarrow\frac{\left(-16-9x\right)}{10}=\frac{\left(25-3x\right)}{4}\)
\(\Leftrightarrow-64-36x=250-30x\)
\(\Leftrightarrow-6x=314\)
\(\Leftrightarrow x=-\frac{157}{3}\)
Vậy -\(n_0\) của PT là: \(x=\frac{-157}{3}\)
c. \(5x+\frac{2}{6}-8x-\frac{1}{3}=4x+\frac{2}{5}-5\)
\(\Leftrightarrow-3x=4x-\frac{23}{5}\)
\(\Leftrightarrow7x=\frac{23}{5}\)
\(\Leftrightarrow x=\frac{23}{35}\)
Vậy \(n_0\) của PT là: \(x=\frac{23}{35}\)
d. \(3x+\frac{2}{3}-3x+\frac{1}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow\frac{5}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow x=-\frac{5}{12}\)
Vậy \(n_0\) của Pt là: \(x=-\frac{5}{12}\)
Giai pt sau
a) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
b) \(\frac{7}{8x}+\frac{5-x}{4x^2-8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\dfrac{x-1}{2x^2-4x}-\dfrac{7}{8x}=\dfrac{5-x}{4x^2-8x}-\dfrac{1}{8x-16}\)
\(\dfrac{x-1}{2x^2-4x}-\dfrac{7}{8x}=\dfrac{5-x}{4x^2-8x}-\dfrac{1}{8x-16}\) ( ĐKXĐ: \(x\ne0;x\ne2\) )
\(\Leftrightarrow\dfrac{x-1}{2x\left(x-2\right)}-\dfrac{7}{8x}=\dfrac{5-x}{4x\left(x-2\right)}-\dfrac{1}{8\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)4}{8x\left(x-2\right)}-\dfrac{7\left(x-2\right)}{8x\left(x-2\right)}=\dfrac{2\left(5-x\right)}{8x\left(x-2\right)}-\dfrac{1x}{8x\left(x-2\right)}\)
\(\Rightarrow4x-4-7x+14=10-2x-x\)
\(\Leftrightarrow-3x+2x+x=10+4-14\)
\(\Leftrightarrow0=0\)
Vậy pt đã cho có nghiệm đúng với mọi x
\(\dfrac{8x^2}{3\left(1-4x^2\right)}=\dfrac{2x}{6x-3}-\dfrac{1+8x}{4+8x}\) giải pt
\(\dfrac{8x^2}{3\left(1-4x^2\right)}=\dfrac{2x}{6x-3}-\dfrac{1+8x}{4+8x}\)
\(\Leftrightarrow\dfrac{8x^2}{3\left(1-2x\right)\left(1+2x\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{1+8x}{4\left(1+2x\right)}\)
\(\Leftrightarrow\dfrac{-32x^2}{12\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x.4\left(1+2x\right)-\left(1+8x\right).3\left(2x-1\right)}{12\left(2x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow8x\left(1+2x\right)-\left(1+8x\right).3.\left(2x-1\right)=-32x^2\)
\(\Leftrightarrow8x+16x^2-6x+3-48x^2+24x+32x^2=0\)
\(\Leftrightarrow26x+3=0\)
\(\Leftrightarrow x=-\dfrac{3}{26}\)
Vậy:......
giải phương trình: x-1/2x^2-4x - 7/8x = 5-x/4x^2-8x - 1/8x-16
Trả lời:
\(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)\(\left(đkxđ:x\ne0;x\ne2\right)\)
\(\Leftrightarrow\frac{x-1}{2x\left(x-2\right)}-\frac{7}{8x}=\frac{5-x}{4x\left(x-2\right)}-\frac{1}{8\left(x-2\right)}\)
\(\Leftrightarrow\frac{4\left(x-1\right)}{8x\left(x-2\right)}-\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{2\left(5-x\right)}{8x\left(x-2\right)}-\frac{x}{8x\left(x-2\right)}\)
\(\Rightarrow4\left(x-1\right)-7\left(x-2\right)=2\left(5-x\right)-x\)
\(\Leftrightarrow4x-4-7x+14=10-2x-x\)
\(\Leftrightarrow10-3x=10-3x\)
\(\Leftrightarrow-3x+3x=10-10\)
\(\Leftrightarrow0x=0\)( luôn thỏa mãn )
Vậy S = R với \(x\ne0;x\ne2\)
(8x-7)(8x-5)(2x-1)(4x-1)=9
(8x-7)(8x-5)(2x-1)(4x-1)=9
\(\left(8x-7\right)\left(8x-5\right)\left(2x-1\right)\left(4x-1\right)=9\)
\(\Leftrightarrow\left(8x-7\right)\left(8x-5\right)\left(4x-4\right)\left(8x-2\right)=72\)
Đặt a = 8x - 5, ta được:
\(\left(a-2\right).a\left(a+1\right)\left(a+3\right)=72\)
\(\Leftrightarrow a^4+4a^3+3a^2-2a^3-8a^2-6a-72=0\)
\(\Leftrightarrow a^4+4a^3-2a^3-8a^2+3a^2+12a-18a-72=0\)\(\Leftrightarrow\left(a^4+4a^3\right)-\left(2a^3+8a^2\right)+\left(3a^2+12a\right)-\left(18a+72\right)=0\)
\(\Leftrightarrow a^3\left(a+4\right)-2a^2\left(a+4\right)+3a\left(a+4\right)-18\left(a+4\right)=0\) \(\Leftrightarrow\left(a+4\right)\left(a^3-2a^2+3a-18\right)=0\)
\(\Leftrightarrow\left(a+4\right)\left(a^3-3a^2+a^2-3a+6a-18\right)=0\)
\(\Leftrightarrow\left(a+4\right)\left[\left(a^3-3a^2\right)+\left(a^2-3a\right)+\left(6a-18\right)\right]=0\)
\(\Leftrightarrow\left(a+4\right)\left[a^2\left(a-3\right)+a\left(a-3\right)+6\left(a-3\right)\right]=0\)
\(\Leftrightarrow\left(a+4\right)\left(a-3\right)\left(a^2+a+6\right)=0\)
Ta có: \(a^2+a+6=a^2+2.a.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{23}{4}=\left(a+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\)
\(\left(a+\dfrac{1}{2}\right)\ge0\)
Suy ra \(\left(a+\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\)
=> a2 +a+6 = 0 (loại)
Suy ra: a = -4 hoặc a=3
Với a = -4, ta được:
8x - 5 = -4
=> x = \(\dfrac{1}{8}\)
Với a = 3, ta được:
8x - 5 = 3
=> x = 1
cái bước thứ 2 mình bị nhầm nhá
phải là:
(8x-7)(8x-5)(8x-4)(8x-2)=9
Giải PT
3. a. \(x^2-10x-39=0\)
c. \(\frac{x^2}{x^3-9}=\frac{1}{x+3}\)
d. \(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)
\(a,x^2-10x-39=0\)
\(\Leftrightarrow x^2-10x-39+64=64\)
\(\Leftrightarrow x^2-10x+25=64\)
\(\Leftrightarrow\left(x-5\right)^2=64\)
làm nốt
\(x^2-10x-39=0\Leftrightarrow x^2-13x+3x-39=0\Leftrightarrow x\left(x-13\right)+3\left(x-13\right)=0\)
\(\Leftrightarrow\left(x-13\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=13\\x=-3\end{cases}}\)
\(b,\frac{x^2}{x^3-9}=\frac{1}{x+3}\)
\(\Leftrightarrow x^2\left(x+3\right)=x^3-9\)
\(\Leftrightarrow x^3+3x^2=x^3-9\)
\(\Leftrightarrow3x^2=-9\left(VL\right)\)
5-2/4x^2-2x-1/8x-16=x-1/2x(x-2)-7/8x