Tìm y :
a) 96 - ( 37,5 : y ) = 94,5
b) \(\frac{6}{13}:\left(\frac{1}{2}+y\right)=\frac{15}{39}\)
c) \(\frac{y}{2}-\frac{y}{5}+\frac{2}{5}=\frac{9}{10}\)
Trả lời mau lên nha các bạn !
Tìm y :
a) 96 - ( 37,5 : y ) = 94,5
b) \(\frac{6}{13}\): \(\left(\frac{1}{2}+y\right)\)= \(\frac{15}{39}\)
c) \(\frac{y}{2}\)- \(\frac{y}{5}\)+ \(\frac{2}{5}\)= \(\frac{9}{10}\)
\(96-\left(37,5:y\right)=94,5\)
\(37,5:y=1,5\)
\(y=25\)
\(\frac{6}{13}:\left(\frac{1}{2}+y\right)=\frac{15}{39}\)
\(\frac{1}{2}+y=\frac{6}{5}\)
\(y=\frac{7}{10}\)
6/13:(1/2+Y)=15/39
1/2+Y=6/5
y=7/10
Chúc bạn học giỏi k cho mk nha
Tìm y :
a) 96 - ( 37,5 : y ) = 94,5
b)\(\frac{6}{13}:\left(\frac{1}{2}+y\right)=\frac{15}{39}\)
c) \(\frac{y}{2}-\frac{y}{5}+\frac{2}{5}=\frac{9}{10}\)
bài 1: cho x, y thuộc Q. cmr:
|x + y| =< |x| + |y|
bài 2: tính:
\(A=\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
bài 3: cho a + b + c = a^2 + b^2 + c^2 = 1 và x : y : z = a : b : c.
cmr: (x + y + z)^2 = x^2 + y^2 + z^2
1
fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffffEz lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
Bài 3:
Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) (vì a + b + c = 1)
Do đó: \(\left(x+y+z\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (vì a2 + b2 + c2 = 1)
Vậy: (x + y + z)2 = x2 + y2 + z2
Bài sau đây làm tôi không còn dám coi thường BĐT lớp 8:
Cho x, y là các số thực thỏa mãn: \(x\ge2,x+y\ge3\). Tìm Min:
\(A=x^2+y^2+\frac{1}{x}+\frac{1}{x+y}\)
Nghĩ mãi mới ra cách AM-GM (hơn 10 phút, mấy lần đầu nhóm sai!), rồi viết lại thành SOS nên 15 phút mới xong..
\(A-\frac{35}{6}=\left(x-2\right)^2\left(1+\frac{1}{4x}\right)+\left(y-1\right)^2+\frac{\left(x+y-3\right)^2}{9\left(x+y\right)}+\left[\frac{17}{9}\left(x+y\right)+\frac{7}{4}x-\frac{55}{6}\right]\)
Cách AM-GM:
\(A=\left(x-2\right)^2+\left(y-1\right)^2+\frac{1}{x}+\frac{1}{x+y}+4x+2y-5\)
\(\ge\left(\frac{1}{x}+\frac{1}{4}x\right)+\left(\frac{1}{x+y}+\frac{15}{4}x+2y-5\right)\)
\(\ge1+\left[\frac{1}{9}\left(x+y\right)+\frac{1}{x+y}\right]+\frac{17}{9}\left(x+y\right)+\frac{7}{4}x-5\ge\frac{35}{6}\)
Đẳng thức xảy ra khi \(x=2;y=1\)
Bài 1: Thực hiện các phép tính dau bằng cách hợp lí
a. \(\frac{11}{225}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)
b. \(1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1\)
Bài 2: Tìm x biết
a. \(\frac{11}{13}-\left(\frac{5}{42}-x\right)=-\left(\frac{15}{28}-\frac{11}{13}\right)\)
b. \(\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
Bài 3: Thực hiện các phép tính sau bằng cách hợp lí nhất
a. \(\left(-\frac{40}{51}\cdot0,32\cdot\frac{17}{20}\right):\frac{64}{75}\)
b. \(-\frac{10}{11}\cdot\frac{8}{9}+\frac{7}{18}\cdot\frac{10}{11}\)
c. \(\frac{3}{14}:\frac{1}{28}-\frac{13}{21}:\frac{1}{28}+\frac{29}{42}-8\)
d. \(-1\frac{5}{7}\cdot15+\frac{2}{7}.\left(-15\right)+\left(-105\right).\left(\frac{2}{3}-\frac{4}{5}+\frac{1}{7}\right)\)
Bìa 4: Tính giá trị của các biểu thức sau
a. \(A=7x-2x-\frac{2}{3}y+\frac{7}{9}y\) với \(x=-\frac{1}{10};y=4,8\)
b. \(B=x+\frac{0,2-0,375+\frac{5}{11}}{-0,3+\frac{9}{16}-\frac{15}{22}}\) với\(x=-\frac{1}{3}\)
hệ phương trình
1, \(\left\{{}\begin{matrix}\frac{1}{x+y}+\frac{1}{x-y}=\frac{5}{8}\\\frac{1}{x+y}-\frac{1}{x-y}=-\frac{3}{8}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{4}{2x-3y}+\frac{5}{3x+y}=2\\\frac{3}{3x+y}-\frac{5}{2x-3y}=21\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\frac{7}{x-y+2}+\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\frac{3}{x}+\frac{5}{y}=-\frac{3}{2}\\\frac{5}{x}-\frac{2}{y}=\frac{8}{3}\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}\frac{2}{x+y-1}-\frac{4}{x-y+1}=-\frac{14}{5}\\\frac{3}{x+y-1}+\frac{2}{x-y+1}=-\frac{13}{5}\end{matrix}\right.\)
6 , \(\left\{{}\frac{\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}}{2\left(x-3\right)-3\left(y+20=-16\right)}}\)
7\(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\)
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
giải hệ phương trình
1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)
3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)
4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)
6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)
7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)
9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)
Tìm x,y,z
\(a,0,2:1\frac{1}{5}=\frac{2}{3}:\left(6.x+7\right)\)
\(b,\frac{37-x}{x+13}=\frac{3}{2}\)
\(c,\frac{x-2}{x-1}=\frac{x+4}{x+7}\)
\(d,\frac{x}{y}=\frac{2}{3};x.y=96\)
\(e,\frac{x}{2}=\frac{y}{3}=\frac{z}{5};x.y.z=810\)
Ai giúp mình đầu tiên mình k cho nha
a)\(0,2:1\frac{1}{5}=\frac{2}{3}:\left(6.x+7\right)\)
\(\frac{2}{3}:\left(6.x+7\right)=0,2:1\frac{1}{5}\)
\(\frac{2}{3}:\left(6.x+7\right)=0,2:\frac{6}{5}\)
\(\frac{2}{3}:\left(6.x+7\right)=\frac{1}{6}\)
\(6.x+7=\frac{2}{3}:\frac{1}{6}\)
\(6.x+7=4\)
\(6.x=4-7\)
\(6.x=-3\)
\(x=-3:6\)
\(x=-0,5\)
Vậy x=-0,5 hay \(\frac{-1}{2}\)
d)\(\frac{x}{y}=\frac{2}{3};x.y=96\)
Từ \(\frac{x}{y}=\frac{2}{3}\)suy ra \(\frac{x}{3}=\frac{y}{2}\)
Đặt k=\(\frac{x}{3}=\frac{y}{2}\)
\(\Rightarrow x=3.k;y=2.k\)
Vì \(x.y=96\)nên \(2k.3k=96\)
\(\Rightarrow6.k^2=96\)
\(\Rightarrow k^2=96:6\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=4\)hoặc\(k=-4\)
+)Với \(k=4\)thì \(x=2\);\(y=3\)
+)Với \(k=-4\)thì \(x=-2\);\(y=-3\)
Vậy \(x=2;y=3\)hoặc \(x=-2;y=-3\)
e) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(x.y.z=810\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
Vì \(x.y.z=810\)nên \(2k.3k.5k=810\)
\(\Rightarrow30.k^3=810\)
\(\Rightarrow k^3=810:30\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
Với \(k=3\)thì \(x=6\); \(y=9\); \(z=15\)
Vậy \(x=6\); \(y=9\); \(z=15\)
Mk chỉ làm đc vậy thui bn à! Xin lỗi thật nhiều nha