tinh B=1+1/2(1+2)+1/3(1+2+3)+1/4+(1+2+3+4)+...+1/200(1+2+....+200)
thuc hien tinh :E=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+.......+1/200(1+2+3+.....+200)
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+....+\frac{1}{200}\left(1+2+...+200\right)\\ \Rightarrow E=1+\frac{1}{2}\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+...+\frac{1}{200}\frac{\left(1+200\right).200}{2}\\ \Rightarrow E=1+\frac{1+2}{2}+\frac{1+3}{2}+....+\frac{1+200}{2}\\ \Rightarrow E=1+\frac{3}{2}+\frac{4}{2}+...+\frac{201}{2}\\ \Rightarrow E=\frac{2+3+4+....+201}{2}=\frac{\left(201+2\right).200:2}{2}=10150\)
Chúc bạn học tốt !!!
thuc hien tinh :E=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+.......+1/200(1+2+3+.....+200)
tinh A/B biet rang:
A=1/2+1/3+1/4+...+1/200
B =1/199+2/198+3/197+...+198/2+199/1
E=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+............+1/200(1+2+......+200)
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{200}\left(1+2+...+200\right)\)
\(E=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+...+\frac{1}{200}.\frac{\left(1+200\right).200}{2}\)
\(E=1+\frac{1+2}{2}+\frac{1+3}{2}+...+\frac{1+200}{2}\)
\(E=1+\frac{3}{2}+\frac{4}{2}+...+\frac{201}{2}\)
\(E=\frac{2+3+4+...+201}{2}=\frac{\left(201+2\right).200:2}{2}\)
\(E=10150\)
tinh r=1/2+1/3+1/4+...+1/200:1/199+2/198+3/197+...+198/2+199/1
1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)........+1/200(1+2+3+4+5+6+7+.....+200)
Thực hiện tính:
E=1+1/2.(1+2)+1/3.(1+2+3)+1/4.(1+2+3+4)+.....+1/200(1+2+...+200)
a)Tính tổng :E=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/200(1+2+3+4+...+200)
AI GIẢI ĐƯỢC MÌNH SẼ LIKE
Áp dụng công thức \(1+2+...+n=\frac{n\left(n+1\right)}{2}\)ta có:
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+...+200\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{200}.\frac{200.201}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{201}{2}\)
\(=\frac{2+3+4+...+201}{2}=\frac{\frac{201.202}{2}-1}{2}=10150\)
thực hiện phép tính
E=1+1/2(1+2)+1/2(1+2+3)+1/4(1+2+3+4)+.....+1/200(1+2+3+....+200)
Xét thừa số tổng quát:
\(\frac{1+2+...+n}{n}=\frac{n\left(n+1\right):2}{n}=\frac{n+1}{2}\)
Thay vào bài toán:
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+3+...+200\right)\)
\(E=1+\frac{1+2}{2}+\frac{1+2+3}{3}+...+\frac{1+2+3+...+200}{200}\)
\(E=1+\frac{2+1}{2}+\frac{3+1}{2}+...+\frac{200+1}{2}\)
\(E=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{201}{2}\)
\(E=\frac{2+3+4+...+201}{2}=\frac{20300}{2}=10150\)