chứng tỏ rằng với mọi số tự nhiên n phân số sau đây là tối giản n+1/3.n+2
chứng tỏ rằng các phân số tối giản với mọi số tự nhiên n : n+1/2n+3
Gọi ƯCLN (n+1,2n+3) = d (d∈N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d
2n+3 ⋮ d
=>(2n+3)-(2n+2)⋮d => d=1
=> ƯCLN(n+1,2n+3) = 1
=> Phân số n+1/2n+3 tối giản (đpcm)
chứng tỏ rằng với mọi số tự nhiên n thì phân số sau tối giản: 16n+3 : 12n+2
Gọi UCLN(16n+3,12n+2)=d
Ta có:16n+3 chia hết cho d =>3(16n+3) chia hết cho d =>48n+9 chia hết cho d
12n+2 chia hết cho d =>4(12n+2) chia hết cho d =>48n+8 chia hết cho d
=>(48n+9)-(48n+8) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy phân số 16n+3/12n+2 tối giản với mọi n là số tự nhiên
chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n:
n+1/ 2n+3
2n+1/ 3n+2
n/ n+1
a) Gọi d là Ư C L N ( n+1; 2n+3)
ta có: n +1 chia hết cho d => 2.(n+1) chia hết cho d => 2n + 2 chia hết cho d
2n + 3 chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản
b) Gọi d là Ư C L N ( 2n+1; 3n+2)
ta có: 2n+1 chia hết cho d => 3.(2n+1) chia hết cho d => 6n + 3 chia hết cho d
3n +2 chia hết cho d => 2.(3n+2) chia hết cho d => 6n + 4 chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
\(\Rightarrow\frac{2n+1}{3n+2}\) là phân số tối giản
c) Gọi d là Ư C L N ( n; n+1)
ta có: n chia hết cho d
n + 1 chia hết cho d
=> n +1 - n chia hết cho d
=> 1 chia hết cho d
\(\Rightarrow\frac{n}{n+1}\) là phân số tối giản
gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:
\(\text{(2n+3)-(n-1) ⋮d}\)
\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow2n-2n+3-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n
chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n:
n+1
2n+3
Gọi d là ƯC(n+1; 2n+3)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+2\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow2n+2-2n-3⋮d\)
\(\Rightarrow\left(2n-2n\right)-\left(3-2\right)⋮d\)
\(\Rightarrow0-1⋮d\)
\(\Rightarrow-1⋮d\)
\(\Rightarrow d\inƯ\left(-1\right)=\left\{-1;1\right\}\)
\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản với mọi n thuộc N
gọi d là ƯC của n + 1 và 2n +3
\(\Rightarrow\)\(n+1⋮\)d
\(2n+3⋮\)d
\(\Rightarrow\)2n + 2 \(⋮\)d
2n + 3 \(⋮\)d
\(\Rightarrow\)( 2n + 3 ) - ( 2n + 2 ) \(⋮\)d
\(\Rightarrow\)1 \(⋮\)d
\(\Rightarrow\)d = 1
Vậy phân số \(\frac{n+1}{2n+3}\)tối giản với mọi số tự nhiên n
Chứng tỏ rằng phân số sau là phân số tối giản với mọi số tự nhiên n: \(\frac{n+1}{2n+3}\)
Gọi ƯCLN(n+1; 2n+3) là d. Ta có:
n+1 chia hết cho d => 2n+2 chia hết cho d
2n+3 chia hết cho d
=> 2n+3-(2n+2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> \(\frac{n+1}{2n+3}\)là phân số tối giản (Đpcm)
gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:
\(\text{(2n+3)-(n-1) ⋮d}\)
\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow2n-2n+3-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n
chứng tỏ rằng các phân số sau là phân số tối giản với mọi số tự nhiên n:
B= 2n+1/5n+2
Gọi UCLN(2n+1,5n+2)=d
Ta có:2n+1 chia hết cho d =>5(2n+1) chia hết cho d =>10n+5 chia hết cho d
5n+2 chia hết cho d =>2(5n+2) chia hết cho d =>10n+4 chia hết cho d
=>(10n+5)-(10n+4) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy phân số \(\frac{2n+1}{5n+2}\) tối giản với mọi số tự nhiên n
Chứng tỏ rằng với mọi số tự nhiên n thì phân số n+2 phần 2n+3 tối giản
Đặt \(\left(n+2,2n+3\right)=d\)
Suy ra \(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow2\left(n+2\right)-\left(2n+3\right)=1⋮d\Rightarrow d=1\).
Suy ra đpcm.
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Chứng minh rằng với mọi số tự nhiên n, phân số sau là tối giản : n+3 / n+2