Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
FC Bá Đạo Bình Chương
Xem chi tiết
Trần Hùng Minh
24 tháng 11 2016 lúc 12:25

Theo đề bài, ta có:

x(x + y + z) = -5; y(x + y + z) = 9; z(x + y + z) = 5

=> (x + y + z)(x + y + z) = -5 + 9 + 5 = 9

=> (x + y + z)= 9

=> x + y + z \(\in\){3; -3}

Với x + y + z = 3, ta có:

   x = -5 : 3 = \(\frac{-5}{3}\)

   y = 9 : 3 = 3

   z = 5 : 3 = \(\frac{5}{3}\)

Với x + y + z = -3, ta có:

   x = -5 : (-3) = \(\frac{5}{3}\)

   y = 9 : (-3) = -3

   z = 5 : (-3) = \(\frac{-5}{3}\)

Vậy x = \(\frac{-5}{3}\); y = 3 ; z = \(\frac{5}{3}\) hoặc x = \(\frac{5}{3}\); y = -3 ; z = \(\frac{-5}{3}\).

Trần Thị Thanh Tâm
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
8 tháng 6 2017 lúc 11:09

Cộng theo từng vế ta được:
\(\left(x+y+z\right)^2=9\)\(\Rightarrow x+y+z=\pm3\)
Nếu \(x+y+z=3\) thì \(x=-\dfrac{5}{3},y=3,z=\dfrac{5}{3}\).
Nếu \(x+y+z=-3\) thì \(x=\dfrac{5}{3},y=-3,z=-\dfrac{5}{3}\).

Fan Cuồng Diep.io
29 tháng 7 2017 lúc 11:40

Cộng theo từng vế ta được :

\(\left(x+y+z\right)^2=9\Rightarrow x+y+z=\pm3\)

Nếu \(x+y+z=3\)thì \(x=-\dfrac{5}{3},y=3,z=\dfrac{5}{3}\).

Nếu\(x+y+x=-3\)thì \(x=\dfrac{5}{3},y=-3,z=-\dfrac{5}{3}\).

Nguyễn Thị Hoàn
Xem chi tiết
Nguyễn Chí Thành
Xem chi tiết
Phan Duy Thái_2007
6 tháng 11 2018 lúc 21:05

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Thái Viết Nam
Xem chi tiết
Tên tôi là Thành
7 tháng 9 2016 lúc 20:46

Ta có : \(x-y=xy=x:y\)

x=0

y=0

thiên thần mặt trời
4 tháng 7 2018 lúc 12:14

Từ \(xy=x:y\)=> \(xy=\frac{x}{y}\)=> \(xy^2=x\)

                                                => \(y^2=1\) => \(y=\pm1\)

Thay \(y=1\) vào    \(x-y=x.y\) ta có : \(x-1=x.1\)

                                                                        => \(x-1=x\)=> \(0x=1\)( vô lý) => loại

Thay \(y=-1\)  vào    \(x-y=x.y\)ta có: \(x-\left(-1\right)=x.\left(-1\right)\)

                                                                          => \(x+1=-x\)=> \(2x=-1\)

                                                                                                              => \(x=\frac{-1}{2}\)

\(v\text{ậy}\hept{\begin{cases}x=\frac{-1}{2}\\y=-1\end{cases}}\)

Sorano Yuuki
Xem chi tiết
Trà My
26 tháng 5 2017 lúc 22:00

\(x\left(x+y+z\right)=-5\left(1\right);y\left(x+y+z\right)=9\left(2\right);z\left(x+y+z\right)=5\left(3\right)\)

Cộng vế với vế của (1);(2);(3) với nhau ta được (x+y+z)2=9 =>x+y+z=-3 hoặc x+y+z=3

TH1: x+y+z=-3 

Thay x+y+z=-3 vào (1);(2) ta được x.(-3)=-5 => x=5/3; y.(-3)=9 => y=-3

x+y+z=(5/3)+(-3)+z=-3 => (5/3)+z=0 => z=-5/3

TH2: x+y+z=3

Thay x+y+z=3 vào (1);(2) ta được x.3=-5 => x=-5/3; y.3=9 => y=3

x+y+z=(-5/3)+3+z=3 => (-5/3)+z=0 => z=5/3

Vậy x=5/3;y=-3;z=-5/3 hoặc x=-5/3;y=3;z=-5/3

Trần Thị Kim Ngân
26 tháng 5 2017 lúc 18:09

Theo đề ra ta có:

\(\frac{-5}{x}=\frac{9}{y}=\frac{5}{z}=x+y+z=\frac{9}{x+y+z}\)(áp dụng tính chất của dãy tỉ số bằng nhau)

\(\rightarrow\left(x+y+z\right)^2=9\rightarrow\orbr{\begin{cases}x+y+z=3\\x+y+z=-3\end{cases}}\)

\(\rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{5}{3}\end{cases},}\orbr{\begin{cases}y=3\\y=-3\end{cases},}\orbr{\begin{cases}z=\frac{5}{3}\\z=\frac{-5}{3}\end{cases}}\)

Đào Thu Hoà
26 tháng 5 2017 lúc 18:41

ta có\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=-5+9+5=9\)

\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)

\(\Rightarrow\left(x+y+z\right)^2=3^2\)

\(\Rightarrow x+y+z=3\)hoặc  \(x+y+z=-3\)

\(\Rightarrow x=-5:3=\frac{-5}{3}\)hoặc  \(x=-5:-3=\frac{5}{3}\)

 \(y=9:3=3\)hoặc \(y=9:\left(-3\right)=-3\)

 \(z=5:3=\frac{5}{3}\)hoặc \(z=5:\left(-3\right)=\frac{-5}{3}\)

Xem chi tiết
♥ Don
4 tháng 1 2020 lúc 19:16

x-2y= 2(x+y)

=> x-2y = 2x+2y

=> -2y-2y= 2x-x

=> x= -4y

Thay x= -4y vào x-y= x/y

=> -4y-y = -4y/ y

=.> -5y= -4

=> y =4/5

=> x= -16/5

bạn ơi mk làm nhanh chỗ tìm x nha

Khách vãng lai đã xóa
♥ Don
4 tháng 1 2020 lúc 19:19

chỗ tìm x bạn làm vậy nè: x =-4y hay x= -4 . 4/5 = -16/5

Khách vãng lai đã xóa
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Đức Trí
18 tháng 8 2023 lúc 14:17

\(5x^4+10x^2+2y^6+4y^3-6=0\)

\(\Leftrightarrow5x^4+10x^2+5+2y^6+4y^3+2-7-6=0\)

\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)

\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)

mà \(\left\{{}\begin{matrix}\left(x^2+1\right)^2\ge0,\forall x\inℤ\\\left(y^3+1\right)^2\ge0,\forall y\inℤ\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1=1\\y^3+1=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^3=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\) thỏa mãn yêu cầu của đề bài.