Cho ba số nguyên x; y; z thỏa mãn x^3 + y^3 + z^3 chia hết cho 7: Chứng minh rằng xyz chia hết cho 7
mn ơi,giúp mình với!!!!
Cho ba số a;b;x thuộc Z và ax - by chia hết cho ( x + y ) . Chứng tỏ ay - bx chia hết cho ( x + y ) , biết rằng ( x + y ) khác 0 .
Giả sử ay - bx chia hết cho x+y
Mà ax-by chia hết cho x+y
=>(ax-by)+(ay-bx) chia hết cho x+y
=> ax-by+ay-bx chia hết cho x+y
=> (ax+ay)-(bx+by) chia hết cho x+y
=> a(x+y)-b(x+y) chia hết cho x+y
=> (a-b)(x+y) chia hết cho x+y (đúng)
=> giả sử đúng
Vậy ay-bx chia hết cho x+y
Ta có: (a - b)(x + y) luôn chia hết cho (x + y)
Theo giả thiết ax - by chia hết cho (x + y)
=> (a - b) (x + y) - (ax - by) chia hết cho (x + y)
=> ax + ay -bx -by - ax + by chia hết cho (x + y)
=> ay - bx chia hết cho 9x + y)
(ĐPCM)
Bài 3 : Cho x , y thuộc tập hợp số nguyên . Chứng minh rằng :
Nếu 5x + 47y chia hết cho 17 thì x + 6x cũng chia hết cho 17 và ngược lại
Cho hai số nguyên x; y thỏa mãn 3x^2 - 2y^2 = 1: Chứng minh rằng x^2 - y^2 chia hết cho 40
1. Tìm x,y,z thuộc N:
(x+y).(y+z).(z+x)+2=2009
2. Chứng minh rằng: abcabc(gạch đầu) chia hết cho 7;11;13
Mình đang cần gấp nha
Chứng minh rằng : 3 nhân a + 2 nhân b chia hết cho 17 khi và chỉ khi 10 nhân a + b chia hết cho 17 ( a,b thuộc Z )
A)Cho y,x,z là 3 số chính phương thỏa mãn: x>y>z
chứng minh rằng ( x-y).(x-z).(y-z) chia hết cho 12
B) có hay không số tự nhiên để 2010+n mũ 2 là số chính phương?
mọi người hộ mk mau nhé mk cần gấp
Bài 1:
a,Cho ba số x,y,z thoả mãn yz>0 . Chứng minh rằng : \(x^2+yz\ge2x\sqrt{yz}\)
b,Cho x,y,z thoả mãn x+y+z\(=3\). Chứng minh rằng:
\(\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+zx}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)