Cho tam giác ABC . M là điểm nằm trong tam giác . Các tia AM,BM,CM cắt BC, CA,AB tại N,P,Q. Qua M kẻ đường song song với BC cắt NP , NQ tại E và F. Chứng minh :
a. ME=MF
b. Giả sử AM vuông góc với BC. Chứng minh góc MNP= góc MNQ
Cho tam giác ABC với điểm M ở bên trong tam giác. Gọi I,J,K theo thứ tự là giao điểm của các tia AM, BM, CM với các cạnh BC, CA, AB. Đường thẳng qua M và song song với BC cắt IK, IJ tại các điểm tương ứng E, F. Chứng minh rằng ME=MF.
JK trong tim tui òi
cho tam giác abc vuông cân tại a. hai tia phân giác bm và cn cắt nhau tại i ( m thuộc ac, n thuộc ab ) . chứng minh :
a, im=in và mn song song bc
b, qua a và n kẻ đường vuông góc với bm cắt bc lần lượt tại d và e . chứng minh am=de=cd
c, tam giác mcd là tam giác gì ?
d, h là trung điểm của bc. chứng minh ah, bm, cn ddoongwf quy
e, chứng minh bm+am>bc
các bạn giúp mình với
mai tớ kiểm tra rồi
cho tam giác abc có m nằm trong tam giác , am,bm,cm cắt bc,ac,ab tại i,j,k đường thẳng qua m song song bc cắt ik tại e và ij tại f chứng minh me=mf
Cho tam giác ABC vuông cân tại A. Trên cạnh AB,AC lần lượt lấy điểm D và E sao cho AD=AE.Qua A và D kẻ các đường vuông góc với BE cắt BC lần lượt tại M và N. Tia ND cắt tia CA tại I. a) Chứng minh: tam giác AID = tam giác ABE và A là trung điểm IC b) Qua N kẻ đường thẳng song song AC cắt AM tại F. CMR CI=2NF c) Cmr: M là trung điểm mỗi đoạn thẳng AF và NC
1 Cho tam giác ABC cân tại A đường cao AH. M là một điểm bất kì trên cạnh BC. Kẻ đường thẳng qua M và song song với AH cắt AB và AC lần lượt tại N và Q
a, CM tam giác ANQ cân
b, Tính các góc của tam giác ANQ biết góc ABC=70
c,Kẻ AI vuông góc với MQ. CM AI song song với BC và AI=MH
2 Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M trên tia đối của tia CA lấy N sao cho AM+AN=2AB. CMR:
a, BM=CN
b,BC cắt MN tại trung điểm I của MN
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC tại H. Trên tia đối của HA lấy D sao cho HA=HD
a) chứng minh: tam giác AHC=tam giác DHC. Tam giác CAD là tam giác gì?
b) trên DC lấy K sao cho C là trung điểm của DK. Chứng minh AK//BC
c) từ C kẻ đường thẳng song song với AB cắt AK tại M. BM cắt AM tại Q. Chứng minh: AM+CM>2MQ
a)Xet 2 tam giac vuong AHB va DHC co:
HC chung
DH = AH
=>\(\Delta\)AHB = \(\Delta\)AHC (2 canh goc vuong)
Ta co : CA=CD (2 canh tuong ung)
=>\(\Delta\)CAD can
b)
Cho tam giác ABC vuông tại A , trung tuyến AM . Qua A kẻ đường thẳng vuông góc với AM cắt đường thẳng vuông góc với BC kẻ qua B tại D , cắt đường thẳng vuông góc với BC tại E . Tia EM cắt tia DB ở I . Gọi P và Q lần lượt là giao điểm của AB và AC với ME . Chứng minh rằng :
a) Tam giác MCE = Tam giác MBI
b) Tam giác DIE cân
c) DE = BD + CE
d) PQ song song BC và PQ = 1/2 BC
Cho tam giác ABC cân tại A . Tia phân giác BAC cắt cạnh BC tại M
a) Chứng minh tam giác AMB và tam giác AMC
b) Kẻ ME vuông góc với AB (E thuộc AB) , kẻ MF vuông góc với AC (F thuộc AC).CM : tam giác AEF
c) CM : AM vuông góc EF
d) Qua B kẻ đường thẳng song song với AC cắt đường thẳng FM tại I . CM : BE = BI
Vẽ hình nữa nhé
Cho tam giác ABC và điểm M nằm bên trong tam giác. AM, BM, CM lần lượt cắt BC, AC, AB tại I, J, K. Đường thẳng qua M và song song với BC cắt IK, IJ lần lượt ở E, F. Chứng minh ME = MF.