cho tam giác abc vuông cân tại a. hai tia phân giác bm và cn cắt nhau tại i ( m thuộc ac, n thuộc ab ) . chứng minh :
a, im=in và mn song song bc
b, qua a và n kẻ đường vuông góc với bm cắt bc lần lượt tại d và e . chứng minh am=de=cd
c, tam giác mcd là tam giác gì ?
d, h là trung điểm của bc. chứng minh ah, bm, cn ddoongwf quy
e, chứng minh bm+am>bc
Cho tam giác ABC đều. M là điểm nằm trong tam giác ABC. Qua M kẻ đường thẳng song song với AC cắt BC tại D , đường thẳng qua M song song với BC cắt AC tại E , đường thẳng qua M song song với BC cắt AB tại F .
a) chứng minh : các tứ giác BFMD, CDME, AEMF là các hình thang cân .
a) góc DME= góc EMF= góc DMF
cho tam giác abc cân tại a, kẻ am vuông góc bc.
a) chứng minh tam giác bam = tam giác cam
b)từ m kẻ đường song song với ab cắt ac tại n, bn cắt am tại g, cg cắt ab tại e. cminh en bằng bm
1) Cho tam giác ABC phân giác AD. Qua D dựng đường thẳng song song với AB đường thẳng này cắt AC tại E. Qua E dựng đường thẳng song song với BC đường thẳng này cắt AB tại F. a) chứng minh AE=AF, b) Xác định hình dạng của tam giác ABC trong trường hợp E là trung điểm AC.
2) Cho hình bình hành ABCD. Từ B kẻ BH vuông góc với AC. Gọi M,N,P,Q lần lượt là trung điểm của AH,AB,NB,BC. a) MP=1/2 NC. b) chứng minh BM vuông góc với NQ.
3) cho tam giác ABC, các đường thẳng AP,AQ theo thứ tự vuông góc với phân giác trong và phân giác ngoài góc B. Các đoạn thẳng AR, AS vuông góc phân giác trong và phân giác ngoài góc C. a) chứng minh APBQ, ÁC là hình chữ nhật, b) Q,R,P,S thẳng hàng, c) QS=1/2 (AB+BC+AC)
Cho tam giác ABC đều. M là điểm nằm trong tam giác ABC. Qua M kẻ đường thẳng song song với AC cắt BC tại D , đường thẳng qua M song song với BC cắt AC tại E , đường thẳng qua M song song với BC cắt AB tại F .
a) chứng minh : các tứ giác BFMD, CDME, AEMF là các hình thang cân .
a) góc DME= góc EMF= góc DMF
cho tam giác abc có m nằm trong tam giác , am,bm,cm cắt bc,ac,ab tại i,j,k đường thẳng qua m song song bc cắt ik tại e và ij tại f chứng minh me=mf
Bài 3 Cho tam giác ABC vuông tại A,M là trung điểm của BC. Qua M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc với AC tại F.
a) Tứ giác AEMF là hình gì? Vì sao?
b) Đường thẳng qua A song song với BC cắt đường thảng qua C song song AB tại N. Chứng minh rằng M, F, N thẳng hàng
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Cho tam giác ABC vuông tại A có AB=6cm BC = 10cm đường trung tuyến BM qua C kẻ đường vuông góc với BM tại D
a, chứng minh tam giác ABM đồng dạng tam giác DCM
b, tính độ dài đoạn thẳng CD
c, qua A kẻ đường song song BC cắt tia BM tại N chứng minh góc MAD = góc MNA