B=(1+1/15)*(1+1/24)*(1+1/35)*...*(1+1/9999)
tính nhanh:1 1/8 x 1 /15 x 1 /24 x 1 1/35 x ........... 1 1/9999 khó lắm đó nha nếu biết cách giải thì viết ra rồi gửi cho mình nha
tính giá trị của biểu thức
A =( 1+1/15)x( 1+1/24)x(1+1/35)x ......x (1+1/9999)
B =(1+1/2)x(1=1/3)x(1+1/4)x.......x(1+1/2017)
C =(1-1/97)x(1-1/98)x(1-1/99)x.....x(1-1/1000)
tính giá trị biểu thức
A=(1+1/15)x(1+1/24)x(1+1/35)x.......x(1+1/9999)
B=(1+1/2)x(1+1/3)x(1+1/4)x...x(1+1/2017)
C=(1-1/97)x(1-1/98)x(1-1/99)x.......x(1-1/1000)
B=3/2x4/3x...........x2018/2017
=3x4x5x...........x2018/2x3x2x2x............x2017
=2x2018
=4036
A,C tương tự
tính giá trị biểu thức
A=(1+1/15)x(1+1/24)x(1+1/35)x.......x(1+1/9999)
B=(1+1/2)x(1+1/3)x(1+1/4)x...x(1+1/2017)
C=(1-1/97)x(1-1/98)x(1-1/99)x.......x(1-1/1000)
S=1/15+1/35+...+1/9999
\(S=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{9999}\)
\(=\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{99\cdot101}\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{3}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{98}{303}\)
\(=\dfrac{49}{303}\)
Vậy \(S=\dfrac{49}{303}\)
#\(Toru\)
Tính nhanh:
A = [1 + 1/5] * [1 + 1/24] * [1 + 1/35] * ... * [1 + 1/9999]
1/3+1/15+1/35+...+1/9999
\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+.......+\frac{1}{99\cdot101}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+.....+\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{99.}\)\(\frac{1}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
1 : 3 + 1:15 + 1: 35 + .... + 1:9999
\(S=1:3+1:15+1:35+...+1:9999\)
\(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{9999}\)
\(S=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(2S=1-\frac{1}{101}\)
\(2S=\frac{100}{101}\)
\(S=\frac{100}{101}:2\)
\(S=\frac{50}{101}\)
1/15 + 1/35 + 1/63 + ... + 1/9999 = ?
49/303 chắc chắn lun mình giải rùi tick nha