Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao yến Chi
Xem chi tiết
Nguyễn Phương Uyên
14 tháng 4 2020 lúc 14:31

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

Khách vãng lai đã xóa
Nguyễn Thị Huyền Trang
14 tháng 4 2020 lúc 14:50

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

Khách vãng lai đã xóa
Cao yến Chi
15 tháng 4 2020 lúc 13:45

các bn giải hộ mk bài 2 ik

thật sự mk đang rất cần nó!!!

Khách vãng lai đã xóa
linh nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 4 2023 lúc 15:02

b: Để A là số nguyên thì 5n-9 chia hết cho 2n+4

=>10n-18 chia hét cho 2n+4

=>10n+20-38 chia hết cho 2n+4

=>\(2n+4\in\left\{1;-1;2;-2;19;-19;38;-38\right\}\)

=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;\dfrac{15}{2};-\dfrac{23}{2};17;-21\right\}\)

Yasuo
Xem chi tiết
Nguyễn Đoàn Thùy Trâm
2 tháng 3 2017 lúc 11:33

a) \(\frac{2n+3}{4n+1}\) là phân số tối giản

\(\frac{2n+3}{4n+1}\)\(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1

=>n=1

mình ko chắc là đúng nha

Vũ Nhật Minh
Xem chi tiết
Văn Thanh Lương
12 tháng 5 2021 lúc 20:05

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

Khách vãng lai đã xóa
Trần Nhật Minh Anh
Xem chi tiết
Vo Thanh
Xem chi tiết
Akai Haruma
29 tháng 12 2023 lúc 23:28

Câu a/

Để $\frac{7}{2n+1}$ là phân số tối giản thì $ƯCLN(7,2n+1)=1$

$\Rightarrow 2n+1\neq 7k$ với $k$ là số tự nhiên bất kỳ

$\Rightarrow n\neq \frac{7k-1}{2}$ với $k$ là số tự nhiên bất kỳ.

b. 

Gọi $d=ƯCLN(n+7, n+2)$

$\Rightarrow n+7\vdots d; n+2\vdots d$

$\Rightarrow (n+7)-(n+2)\vdots d$

$\Rightarrow 5\vdots d$

$\Rightarrow d=1$ hoặc $d=5$

Để phân số đã cho tối giản thì $d\neq 5$

Điều này xảy ra khi $n+2\not\vdots 5$

$\Leftrightarrow n\neq 5k-2$ với $k$ là số tự nhiên bất kỳ.

Lucy Yumio
Xem chi tiết
Cao Nguyễn Thành Huy
Xem chi tiết

Làm được có mỗi câu a) thôi :(

Để a là số nguyên thì \(4n+5⋮2n+2\)

=> \(4n+4+1⋮2n+2\)

Nhận thấy \(4n+4⋮2n+2\) nhưng \(1⋮̸2n+2\left(n\inℤ\right)\)

Suy ra không có giá trị n để A là số nguyên.

Khách vãng lai đã xóa
Nguyễn Huy Tú
6 tháng 3 2021 lúc 17:27

b, Đặt ƯCLN A = 4n + 5 ; 2n + 2 = d 

\(4n+5⋮d\)(1)

\(2n+2⋮d\Rightarrow4n+4⋮d\)(2)

 Lấy (1) - (2) ta được : \(4n+5-4n-4⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Khách vãng lai đã xóa
잘 생긴 미덕
Xem chi tiết
Đào Nhật Minh
21 tháng 3 2020 lúc 8:06

Để A là phân số tối giản thì UCLN(2n+7, 5n+2)=1

Đặt UCLN(2n+7, 5n+2)=d

=>2n+7\(⋮d\)=>5(2n+7)=>10n+35 \(⋮d\)

5n+2\(⋮d\)=>2(5n+2)=>10n+4 \(⋮d\)

Vì 10n+35 \(⋮d\), 10n+4\(⋮d\)=>(10n+35)-(10n+4)

=(10n-10n)+(35-4)=35-4=31 \(⋮d\)=>\(d\in\left\{1;31\right\}\)

Để 2n+7/5n+2 là phân số tối giản thì UCLN(2n+7, 5n+2)=1

Để 2n+7 và 5n+2 không cùng chia hết cho 31 thì n\(\ne12,43,74,105,...\)(mỗi số có khoảng cách với nhau là 31 đơn vị)

Vậy để A là phân số tối giản thì \(n\inℕ,n\ne12,43,74,105,136,...\)

Khách vãng lai đã xóa