Gọi d là ước chung nguyên tố của 2n+7 và n+2.
\(\Rightarrow\hept{\begin{cases}\left(2n+7\right)⋮d\\\left(n+2\right)⋮d\end{cases}}\)
\(\Rightarrow\)(2n+7)-2(n+2)\(⋮d\)
\(\Rightarrow\)3\(⋮d\),mà \(d\)là số nguyên tố
\(\Rightarrow\)\(d=3\)
\(\Rightarrow\)(n+2)\(⋮\)3
\(\Rightarrow n+2=3k\)\(\left(k\inℕ\right)\)
\(\Rightarrow n=3k+2\)
Thay n=3k+2 vào tử số ta được:
\(2n+7=2\left(3k+2\right)+7=6k+11\)
Mà\(\left(3k,6k+11\right)=1\)
\(\Rightarrow\)\(\frac{2n+7}{n+2}\)là phân số tối giản.
\(\Rightarrow n=1.\)
Vậy \(n=1.\)