Cho f(x) = x^2 + bx + c
a) Xác định các số b , c biết f(0) = 5 ; f(2)=1
b) Với các giá trị b , c vừa tìm được , chứng minh rằng f(x) vô nghiệm
Cho f(x) = \(^{x^2}\)+ bx +c
a) Xác định các số b, c biết f(0)= 5 ; f(2)=1
b) Với các giá trị b, c vừa tìm được chứng minh rằng f(x) vô nghiệm
a) \(f\left(x\right)=x^2+bx+c\)
\(f\left(0\right)=5\)\(\Rightarrow0^2+0.b+c=5\)
\(\Rightarrow c=5\)
\(f\left(2\right)=1\)\(\Rightarrow2^2+2.b+5=1\)
\(\Rightarrow b=-4\)
b) \(f\left(x\right)=0\)
\(\Rightarrow x^2+bx+c=0\)
\(\Rightarrow x^2-4x+5=0\)
\(\Rightarrow x^2-4x+4-4+5=0\)
\(\Rightarrow\left(x-2\right)^2+1=0\)
Ta thấy: \(\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2+1\ne0\)
\(\Rightarrow\)Phương trình vô nghiệm (dpcm)
a, ta có f(0)=02+b*0+c=5
Suy ra c=5
Thay c=5 vào f(2) ta có f(2)=22+b*2+5=1
Suy ra 4+b*2+5=1. Suy ra 9+b*2=1
b*2=1-9
b=-8/2=-4
Vậy c=5, b=-4
b, Thay b=-4, c=5 vào f(x) ta có (đa thức này có nghiệm)
x2+(-4)*x+5=x2+x-5x+5=0
x*(x+1)-5*(x+1)=0
(x-5)*(x+1)=0
suy ra x-5=0 nên x=5 hoặc x+1=0 nên x=-1
Vậy x=5 hoặc x=-1
xác định hệ số a,b,c của hàm số y=f(x)=a.x^2+bx+c biết f(0)=5 , f(1)=0 , f(5)=0
+f(0) = a.0+b.0 +c =5 => c =5
+f(1)= a.1 +b.1+ 5 = 0 => a+b =-5 (1)
+ f(5) =a.52 +b.5 +5 =0 => 5a +b =-1 (2)
(10(2) => 4a +(a+b) =-1 => 4a -5 =-1 => 4a =4 => a =1
=> b =-5-a = -5 -1 = -6
Vậy a =1; b =-6 ; c =5
Cho hàm số bậc hai \(y = f(x) = a{x^2} + bx + c\) có \(f(0) = 1,f(1) = 2,f(2) = 5.\)
a) Hãy xác định giá trị của các hệ số \(a,b\) và \(c.\)
b) Xác định tập giá trị và khoảng biến thiên của hàm số.
Tham khảo:
a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)
Lại có:
\(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)
\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)
Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))
Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)
b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)
Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)
Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)
Hay \(S\left( {0;1} \right).\)
Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:
Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)
hàm số: y=f(x)=ax^2+bx+c
a) xác định các hệ số a;b;c biết: f(0)=5; f(1)=0; f(5)=0
b) trong 2 điểm P(-1;3) và Q(1/2; 9/4) điểm nào thuộc đồ thị hàm số
c) tìm x biết: y=5
Xác định các hệ số a,b,c của hàm số y=f(x)=ax^2+bx+c , biết f(0)=1, f(1)=2 và f(2)=4
Theo de ta co:
f(0) = a.02+b.0+c = c =1
f(1)=a.12+b.1+c = a+b+1 = 2 => a+b = 1
f(2)=a.22+b.2+c = 4a+2b+1=2(2a+b)+1 = 4 => 2(2a+b) = 3 => 2a+b = 3/2 => b = 3/2 - 2a
Thay b=3/2 - 2a vao bieu thuc: a+b=1 ta duoc:
a+3/2-2a = 1
3/2-a= 1
=> a = 3/2 - 1 = 1/2
Suy ra: b = 3/2 - 2.1/2 = 1/2
Vay: a = 1/2 ; b=1/2 ; c=1
Cho hàm số \(y=f\left(x\right)=ax^2+bx+c\)
Xác định các hệ số \(a,b,c\) biết \(f\left(0\right)=1\),\(f\left(1\right)=2\),\(f\left(2\right)=4\)
Giúp mình với :3?
f(0) = 1
\(\Rightarrow\) a.02 + b.0 + c = 1
\(\Rightarrow\) c = 1
Vậy hệ số a = 0; b = 0; c = 1
f(1) = 2
\(\Rightarrow\) a.12 + b.1 + c = 2
\(\Rightarrow\) a + b + c = 2
Vậy hệ số a = 1; b = 1; c = 1
f(2) = 4
\(\Rightarrow\) a.22 + b.2 + c = 4
\(\Rightarrow\) 4a + 2b + c = 4
Vậy hệ số a = 4; b = 2; c = 1
Chúc bn học tốt! (chắc vậy :D)
a)Cho hàm số f(x)=ax^2+bx+c là các số hữu thỉ .Chứng tỏ rằng f(-2),f(3)lớn hơn hoặc bằng 0 biết rằng 13a+b+2c=0
b)Cho hàm số f(x) xác định với mọi x thuộc R .Biết rằng với mọi x ta đều có f(x)+3*f(1/x)=x^2
Cho y=f(x)=ax^2+bx+c
Xác định a,b,c biết
f(0)=5
f(1)=0
f(5)=0
Cho hàm số: y= f(x)=ax2+bx+c.
a) Xác định hệ số a;b;c biết rằng f(0)=5;f(2)=0;f(5)=0
b) Trong hai diểm p(-1;3) và Q(1/2;9/4). Điểm nào thuộc đồ thị của hàm số trên
c) Tìm x biết y=-3
Cho hàm số: y= f(x)=ax^2+bx+c.
a) Xác định hệ số a;b;c biết rằng f(0)=5;f(2)=0;f(5)=0
b) Trong hai diểm p(-1;3) và Q(1/2;9/4). Điểm nào thuộc đồ thị của hàm số trên
c) Tìm x biết y=-3
\(f\left(0\right)=5=>c=5;f\left(2\right)=4.a+2.b+5=0;f\left(5\right)=25a+5b+5=0\Leftrightarrow5a+b+1=0\)
\(\hept{\begin{cases}4a+2b+5=0\\5a+b+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4a+2b+5=0\\10a+2b+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4a+2b+5=0\\6a-3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=-\frac{7}{2}\\a=\frac{1}{2}\end{cases}}\)
\(f\left(x\right)=\frac{1}{2}x^2-\frac{7}{2}x+5\)
b)
\(f\left(-1\right)=\frac{1}{2}+\frac{7}{2}+5=9=>P\left(-1;3\right)kothuocHS\)
\(f\left(\frac{1}{2}\right)=\frac{1}{2}.\frac{1}{4}-\frac{7}{2}.\frac{1}{2}+5=\frac{\left(1-14+5.8\right)}{8}=\frac{27}{8}=>Qkothuoc\)
c)
\(\frac{1}{2}x^2-\frac{7}{2}x+5=-3\Rightarrow\frac{1}{2}x^2-\frac{7}{2}x+8=0\)
\(x^2-7x+16=0\Leftrightarrow\left(x^2-2.\frac{7}{2}x+\frac{49}{4}\right)+\frac{15}{4}\)vo nghiem